ĐKXĐ: \(y\ge-5\)
Xét pt: \(\left(x-1\right)\sqrt{y+5}=y-x+5\)
\(\Leftrightarrow y+5-x\sqrt{y+5}-x+\sqrt{y+5}=0\)
\(\Leftrightarrow\sqrt{y+5}\left(\sqrt{y+5}-x\right)+\sqrt{y+5}-x=0\)
\(\Leftrightarrow\left(\sqrt{y+5}-x\right)\left(\sqrt{y+5}+1\right)=0\)
\(\Leftrightarrow\sqrt{y+5}=x\)
\(\Rightarrow x^2=y+5\) (với \(x\ge0\))
Thế vào pt dưới:
\(y+5+y^2=7\Rightarrow y^2+y-2=0\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=\sqrt{6}\\y=-2\Rightarrow x=\sqrt{3}\end{matrix}\right.\)