Ta có x3 + y3 \(\le8-6xy\)
<=> (x + y)3 - 8 - 3xy(x + y) + 6xy \(\le0\)
<=> (x + y - 2)[(x + y)2 + 2(x + y) + 4)] - 3xy(x + y - 2) \(\le0\)
<=> (x + y - 2)(x2 - xy + y2 + 2x + 2y + 4) \(\le0\)
<=> x + y - 2 \(\le\) 0 (Vì x2 - xy + y2 + 2x + 2y + 4 > 0 \(\forall xy\))
<=> x + y \(\le2\)
Khi đó
P = \(\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{3}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{3}{2xy}\)
\(\dfrac{4}{\left(x+y\right)^2}+\dfrac{3}{2xy}\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{6}{\left(x+y\right)^2}=\dfrac{10}{\left(x+y\right)^2}\ge\dfrac{10}{2^2}=\dfrac{5}{2}\)
Dấu "=" xảy ra <=> x = y = 1