Ta có: \(a^4+4b^4=a^4+4b^4+4a^2b^2-4a^2b^2=\left(a^2+2b^2\right)^2-\left(2ab\right)^2=\left[\left(a+b\right)^2+b^2\right]\left[\left(a-b\right)^2+b^2\right]\)
Vì \(\left(a+b\right)^2+b^2>1\)
\(\Rightarrow a^4+4b^4\) là SNT khi \(\left(a-b\right)^2+b^2=1\)
\(\Rightarrow a=b=1\)