\(a,ĐK:a>0;a\ne1\\ A=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ b,A< \dfrac{1}{2}\Leftrightarrow\dfrac{\sqrt{a}-1}{\sqrt{a}}-\dfrac{1}{2}< 0\\ \Leftrightarrow\dfrac{2\sqrt{a}-2-\sqrt{a}}{2\sqrt{a}}< 0\\ \Leftrightarrow\sqrt{a}-2< 0\left(2\sqrt{a}>0\right)\\ \Leftrightarrow0\le a< 4\)