\(a,\Leftrightarrow\left\{{}\begin{matrix}k-3\ne2k+1\\-3k+3\ne k+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k\ne-4\\k\ne-\dfrac{1}{2}\end{matrix}\right.\)
\(b,\Leftrightarrow\left\{{}\begin{matrix}k-3\ne2k+1\\-3k+3=k+5\end{matrix}\right.\Leftrightarrow k=-\dfrac{1}{2}\\ c,\Leftrightarrow\left\{{}\begin{matrix}k-3=2k+1\\-3k+3\ne k+5\end{matrix}\right.\Leftrightarrow k=-4\\ d,\Leftrightarrow\left(k-3\right)\left(2k+1\right)=-1\\ \Leftrightarrow2k^2-5k-2=0\\ \Leftrightarrow\left[{}\begin{matrix}k=\dfrac{5+\sqrt{41}}{4}\\k=\dfrac{5-\sqrt{41}}{4}\end{matrix}\right.\)
\(e,\Leftrightarrow\left\{{}\begin{matrix}k-3=2k+1\\-3k+3=k+5\end{matrix}\right.\Leftrightarrow k\in\varnothing\)