Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b};ab\le\dfrac{\left(a+b\right)^2}{4}\)
\(P=\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x\left(y+z\right)}\ge\dfrac{4}{\dfrac{\left(x+y+z\right)^2}{4}}=\dfrac{4}{\dfrac{9}{4}}=\dfrac{16}{9}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}xy=xz\\x=y+z\end{matrix}\right.\Leftrightarrow x=\dfrac{3}{2};y=z=\dfrac{3}{4}\)