\(ĐK:x\ge-1\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+1}\\b=\sqrt{x^2-x+1}\\c=\sqrt{x+3}\end{matrix}\right.\left(a,b\ge0;c>0\right)\), pt trở thành:
\(\dfrac{ab}{c}+a=b+c\\ \Leftrightarrow ab+ac=bc+c^2\\ \Leftrightarrow ab+ac-bc-c^2=0\\ \Leftrightarrow\left(b+c\right)\left(a-c\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=c\\b+c=0\end{matrix}\right.\\ \forall a=c\Leftrightarrow x+1=x+3\Leftrightarrow0x=1\left(vn\right)\\ \forall b+c=0\)
Vì \(b\ge0;c>0\Leftrightarrow b+c>0\) nên pt vô nghiệm
Vậy pt vô nghiệm