a) \(A=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(đk:x\ge0,x\ne1\right)\)
\(=\left(1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)