c: Ta có: \(\left(x-\dfrac{1}{2}\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=2\\x-\dfrac{1}{2}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=2\\x-\dfrac{1}{2}=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\left(x-\dfrac{1}{2}\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=2\\x-\dfrac{1}{2}=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(\left(x-\dfrac{1}{2}\right)^2=2^2\)
\(x-\dfrac{1}{2}=2\)
\(x=\dfrac{5}{2}\)
\(\left(x-\dfrac{1}{2}\right)^2=4\)
<=> \(\left(x-\dfrac{1}{2}\right)^2-2^2=0\)
<=> \(\left(x-\dfrac{1}{2}-2\right)\left(x-\dfrac{1}{2}+2\right)=0\)
<=> \(\left[{}\begin{matrix}x-\dfrac{1}{2}-2=0\\x-\dfrac{1}{2}+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)