Đặt \(A=\dfrac{y^2}{9x^2-12xy+5y^2}\)
\(A=\dfrac{9x^2-12xy+5y^2-\left(9x^2-12xy+4y^2\right)}{9x^2-12xy+5y^2}=1-\dfrac{\left(3x-2y\right)^2}{9x^2-12xy+5y^2}\le1\)
\(A_{max}=1\) khi \(3x-2y=0\)
\(B=\dfrac{8x^2+6xy}{x^2+y^2}=\dfrac{9\left(x^2+y^2\right)-\left(x^2-6xy+9y^2\right)}{x^2+y^2}=9-\dfrac{\left(x-3y\right)^2}{x^2+y^2}\le9\)
\(B_{max}=9\) khi \(x-3y=0\)