Toán

Đạt Đậu
32 phút trước

Có \(\left(x+1\right)^{24}\ge0\forall x\)

\(\left(y-1\right)^{28}\ge0\forall y\)

Nên \(\left(x+1\right)^{24}+\left(y-1\right)^{28}\ge0\forall x,y\)

Dấu "=" xảy ra khi \(x=-1,y=1\)

Bình luận (0)
Akai Haruma
31 phút trước

Lời giải:$ABCD$ là hình vuông nên $AC=\sqrt{2}a$

Ta thấy: $SA^2+SC^2=a^2+a^2=2a^2=AC^2$

$\Rightarrow SAC$ là tam giác vuông tại $S$

$\Rightarrow \overrightarrow{SA}.\overrightarrow{SC}=0$

Bình luận (0)

\(\left\{{}\begin{matrix}x+\sqrt{5}y=\sqrt{5}\\\sqrt{15}x-\sqrt{5}y=\sqrt{15}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}y=\sqrt{5}\\\left(\sqrt{15}+1\right)x=\sqrt{15}+\sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{15}+1}\\y=\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{15}+1}\end{matrix}\right.\)

Bình luận (0)

1) Ta có: \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}-3\sqrt{y}=15\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11\sqrt{x}=33\\3\sqrt{x}-\sqrt{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

2) Ta có: \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{x+3}+4\sqrt{y+1}=-4\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y+1}=0\\\sqrt{x+3}-2\sqrt{y+1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=0\\\sqrt{x+3}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Bình luận (0)
Loading...