Trong mặt phẳng với hệ trục tọa độ Oxy có tam giác ABC có a(1;4) tiếp tuyến tại A cùa đường tròn ngoại tiếp tam gia1`c ABC cắt BC tãi D,đường phân giác trong góc ABD ptrinh: x-y+2=0 co điểm M(-4;10 thuộc cạnh AC.viết ptrinh đường thẳng AB
Trong mặt phẳng với hệ trục tọa độ Oxy có tam giác ABC có a(1;4) tiếp tuyến tại A cùa đường tròn ngoại tiếp tam gia1`c ABC cắt BC tãi D,đường phân giác trong góc ABD ptrinh: x-y+2=0 co điểm M(-4;10 thuộc cạnh AC.viết ptrinh đường thẳng AB
Tìm số tự nhiên nhỏ nhất sao cho Căn(x+1) <x+3
4 3 1 = 8 4 3 1 = 16 ...v ...v ...v = 111333( đùa đó)
Ai giúp em giải mấy bài này được không? ai biết bài nào thì giúp em bài đó
Em cám ơn nhiều ạ
Giải phương trình:
1) \(\sqrt{2x+3}+\sqrt{5-8x}=\sqrt{4x+7}\)
2) \(x^2+x+6\sqrt{x-2}=54\)
3) \(x^2+\sqrt{x+2004}=2004\)
4) \(x^2+x+12\sqrt{x+1}=108\)
giải pt lượng giác :
1. cos^2 + sinx +1 = 0
2. cosx - cos2x =1/2
3. sinx - căn của 3 cosx = 1 ( căn của mỗi 3 thôi nhé )
Biện luận
1. tìm m để pt [ x^2 -1] = m^4 - m^2 +1 cos 4 nghiem phan biet ( [ ] la gia tri tuyet doi nhe )
2. giai va bien luan (theo tham so m) bat pt : (m-1)x +2 / x-2 < m+1
3. tim m de pt co 4 ngiem phan biet
(m-1)x^4 - 2(m+2)x^2 + 2m +1 +0
1) <=> 1 - sin2x + sin x + 1 = 0
<=> - sin2x + sin x = 0 <=> sinx.(1 - sin x) = 0 <=> sin x = 0 hoặc sin x = 1
+) sin x = 0 <=> x = k\(\pi\)
+) sin x = 1 <=> x = \(\frac{\pi}{2}+k2\pi\)
2) <=> 2cos x - 2(2cos2 x - 1) = 1 <=> -4cos2 x + 2cos x + 1 = 0
\(\Delta\)' = 5 => cosx = \(\frac{-1+\sqrt{5}}{-4}\) (Thỏa mãn) hoặc cosx = \(\frac{-1-\sqrt{5}}{-4}=\frac{\sqrt{5}+1}{4}\)(Thỏa mãn)
cosx = \(\frac{-1+\sqrt{5}}{-4}\) <=> x = \(\pm\) arccos \(\frac{-1+\sqrt{5}}{-4}\) + k2\(\pi\)
cosx = \(\frac{\sqrt{5}+1}{4}\) <=> x =\(\pm\) arccos \(\frac{\sqrt{5}+1}{4}\) + k2\(\pi\)
Vậy....3) chia cả 2 vế cho 2 ta được:\(\frac{1}{2}\sin x-\frac{\sqrt{3}}{2}\cos x=\frac{1}{2}\) <=> \(\cos\frac{\pi}{3}\sin x\sin-\sin\frac{\pi}{3}\cos x=\sin\frac{\pi}{6}\Leftrightarrow\sin\left(x-\frac{\pi}{3}\right)=\sin\frac{\pi}{6}\)<=> \(x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\) hoặc \(x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\)<=> \(x=\frac{\pi}{2}+k2\pi\) hoặc \(x=\frac{7\pi}{6}+k2\pi\)Vậy....1) Có: m4 - m2 + 1 = (m2 - \(\frac{1}{2}\))2 + \(\frac{3}{4}\) > 0 với mọi m
|x2 - 1| = m4 - m2 + 1
<=> x2 - 1 = m4 - m2 + 1 (1) hoặc x2 - 1 = - ( m4 - m2 + 1 ) (2)
Rõ ràng : nếu x1 là nghiệm của (1) thì x1 không là nghiệm của (2)
Để pt đã cho 4 nghiệm phân biệt <=> pt (1) và (2) đều có 2 nghiệm phân biệt
(1) <=> x2 = m4 - m2 + 2 > 0 với mọi m => (1) luôn có 2 nghiệm phân biệt
(2) <=> x2 = - m4 + m2 . Pt có 2 nghiệm phân biệt <=> m2 - m4 > 0 <=> m2.(1 - m2) > 0
<=> m \(\ne\) 0 và 1 - m2 > 0
<=> m \(\ne\) 0 và -1 < m < 1
Vậy với m \(\ne\) 0 và -1 < m < 1 thì pt đã cho có 4 nghiệm pb
Giải phương trình lượng giác:
1.sin^2x + sin 2x = 3 cos^2x
2.sinx + cosx = 2√2 sinxcosx
1. \(\sin^2x+\sin2x=3\cos^2x\Leftrightarrow\sin^2x+2\sin x\cos x-3\cos^2x=0\Leftrightarrow4\sin^2x+2\sin x\cos x-3=0\)
Vì \(\cos x=0\) không phải là nghiệm của phương trình, nên chia 2 vế pt cho \(\cos x\), ta đc:
\(4\tan^2x+2\tan x-\frac{3}{\cos^2x}=0\Leftrightarrow4\tan^2x+2\tan x-3\left(1+\tan^2x\right)=0\Leftrightarrow\tan^2x+2\tan x-3=0\)
Suy ra: \(\begin{matrix}\tan x=1\\\tan x=-3\end{matrix}\) suy ra x.
b) \(\Leftrightarrow\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\sin2x\Leftrightarrow\sin\left(x+\frac{\pi}{4}\right)=\sin2x\Leftrightarrow\begin{cases}x+\frac{\pi}{4}=2x+k2\pi\\x+\frac{\pi}{4}=\pi-2x+k2\pi\end{cases}\)
\(\Leftrightarrow\begin{cases}x=\frac{\pi}{4}-k2\pi\\x=\frac{\pi}{4}+\frac{k2\pi}{3}\end{cases}\)
Vậy ....
Chỗ Viết các nghiệm: Sửa lại : dùng dấu ngoặc vuông thay cho ngoặc nhọn
tìm m để pt 3sinx +m^2 - 2 =0 có nghiệm thuộc (-pi/3;pi/2)
cho hình lăng trụ đứng ABC.A'B'C' có mặt đáy là tam giác ABC vuông tại B và AB=a, BC=2a, AA'=3a. Một mặp phẳng (P) đi qua A và vuông góc với CA' lần lượt cắt các đoạn thẳng CC' và BB' tại M và N.
mọi người giúp mình xác định mặt phẳng (P) với..
Qua A vẽ đường thẳng vuông góc với CA', cắt CC' tại D.
Nối BA'. Qua A vẽ đường thẳng vuông góc với BA', cắt BB' tại E.
mp (AED) là mặt phẳng P cần tìm.
Bạn tự chứng minh nhé.
ok thanks bạn nhé. mình cũng vẽ kiểu này nhưng không biết chứng minh. giờ chứng minh đc r. :d
\(\int_0^{\frac{\pi}{2}}\left(x+\sin\left(x\right)\right)\cos\left(x\right)\)
\(\int\limits^{\frac{\pi}{2}}_0xcosxdx+\int\limits^{\frac{\pi}{2}}_0sinx.cosxdx=I_1+I_2\)
Tính \(I_1=\int\limits^{\frac{\pi}{2}}_0x.\left(\sin x\right)'dx=x\sin x-\int\limits^{\frac{\pi}{2}}_0\sin xdx=\frac{\pi}{2}+\cos x\left(0;\frac{\pi}{2}\right)=\frac{\pi}{2}+\cos\frac{\pi}{2}-\cos0=\frac{\pi}{2}-1\)
tính \(I_2=\int\limits^{\frac{\pi}{2}}_0\frac{\sin2x}{2}dx=\left(\frac{-\cos2x}{4}\right)^{\frac{\pi}{2}}_0=-\left(-\cos0\right)=1\)
=> I = \(\frac{\pi}{2}\)
e2x _ (e+1)ex + e =0 .giải giúp em với
Đặt \(t=e^x,t>0\)
Phương trình trở thành: \(t^2-\left(e+1\right)t+e=0\)
\(\Leftrightarrow\left(t-1\right)\left(t-e\right)=0\)
\(\Leftrightarrow t=1;t=e\)
+ \(t=1\Rightarrow e^x=1\Leftrightarrow x=0\)
+\(t=e\Rightarrow e^x=e\Leftrightarrow x=1\)
Vậy phương trình có nghiệm là x = 0 hoặc x = 1
tìm m để pt 3sinx +m^2 - 2 =0 có nghiệm thuộc (-pi/3;pi/2)
=> \(\sin x=\frac{2-m^2}{3}\) (*)
khi \(x\in\left(\frac{-\pi}{3};\frac{\pi}{2}\right)\) => \(\sin x\in\left(\frac{-\sqrt{3}}{2};1\right)\)
Để (*) có nghiệm \(x\in\left(\frac{-\pi}{3};\frac{\pi}{2}\right)\) <=> \(\frac{2-m^2}{3}\in\left(\frac{-\sqrt{3}}{2};1\right)\)
<=> \(\frac{-\sqrt{3}}{2}\le\frac{2-m^2}{3}\le1\Leftrightarrow\frac{-3\sqrt{3}}{2}\le2-m^2\le3\Leftrightarrow\frac{-3\sqrt{3}-4}{2}\le-m^2\le1\)
<=> \(-1\le m^2\le\frac{4+3\sqrt{3}}{2}\Leftrightarrow-\sqrt{\frac{4+3\sqrt{3}}{2}}\le m\le\sqrt{\frac{4+3\sqrt{3}}{2}}\)
Vậy với \(-\sqrt{\frac{4+3\sqrt{3}}{2}}\le m\le\sqrt{\frac{4+3\sqrt{3}}{2}}\) thì pt .....