Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ng Chau Anh
Xem chi tiết

image.png

Ẩn danh
Xem chi tiết
Fisherman🎣
Xem chi tiết
Lưu ngọc phương uyên
Xem chi tiết
Ẩn danh
Xem chi tiết

Câu 1:

a: Đúng

b: \(A=\sin^2x+3\cdot\sin x\cdot cosx-4\cdot cos^2x\)

\(=1-cos^2x-4\cdot cos^2x+3\cdot\sin x\cdot cosx\)

\(=1-5\cdot cos^2x+3\cdot\sin x\cdot cosx\)

=>\(\frac{1-5\cdot cos^2x+3\cdot\sin x\cdot cosx}{cos^2x}=\frac{1}{cos^2x}-5+3\cdot\frac{\sin x}{cosx}\)

\(=\tan^2x+1-5+3\cdot\tan x=\tan^2x+3\cdot\tan x-4\)

=>\(A\cdot\left(\tan^2x+1\right)=\tan^2x+3\cdot\tan x-4\)

=>\(A=\frac{\tan^2x+3\cdot\tan x-4}{\tan^2x+1}\)

=>Đúng

c: \(P=\frac{\sin^2x+3\cdot\sin x\cdot cosx-4\cdot cos^2x}{\tan x-1}\)

\(=\frac{\tan^2x+3\cdot\tan x-4}{\tan^2x+1}:\left(\tan x-1\right)=\frac{\left(\tan x+4\right)\left(\tan x-1\right)}{\left(\tan x-1\right)\left(\tan^2x+1\right)}=\frac{\tan x+4}{\tan^2x+1}\)

=>Đúng

d: \(\frac{1}{cos^2x}=\tan^2x+1\)

=>\(\tan^2x+1=\frac{1}{\left(\frac12\right)^2}=1:\frac14=4\)

=>\(\tan^2x=3\)

=>\(tanx=\sqrt3\) hoặc \(tanx=-\sqrt3\)

\(P=\frac{\tan x+4}{1+\tan^2x}=\frac{\tan x+4}{4}\)

Khi tan x=\(\sqrt3\) thì \(P=\frac{4+\sqrt3}{4}\)

Khi tan x=-\(\sqrt3\) thì \(P=\frac{4-\sqrt3}{4}\)

=>Sai

Câu 2:

a: \(\left(\sin x+cosx\right)^2=\sin^2x+cos^2x+2\cdot\sin x\cdot cosx\)

\(=1+2\cdot\sin x\cdot cosx\)

=>Đúng

b: \(\tan^2x-\sin^2x\)

\(=\frac{\sin^2x}{cos^2x}-\sin^2x=\sin^2x\left(\frac{1}{cos^2x}-1\right)\)

\(=\sin^2x\cdot\frac{1-cos^2x}{cos^2x}=\sin^2x\cdot\frac{\sin^2x}{cos^2x}=\sin^2x\cdot\tan^2x\)

=>Đúng

c: Sai

d: \(A=\frac{\tan^2x-\sin^2x+\left(\sin x+cosx\right)^2-1}{\tan^2x\cdot\sin^2x}\)

\(=\frac{\tan^2x\cdot\sin^2x-2\cdot\sin x\cdot cosx}{\tan^2x\cdot\sin^2x}=1-\frac{2}{\sin x}\cdot\frac{cosx}{\tan^2x}=1-\frac{2}{\sin x}\cdot\frac{cosx\cdot cos^2x}{\sin^2x}\)

\(=1-\frac{2\cdot cos^3x}{\sin^3x}=1-2\cdot\cot^3x\)

=>Sai

Trần Kim Cường
Xem chi tiết

n(n+1)<=20

=>\(n^2+n-20\le0\)

=>(n+5)(n-4)<=0

mà n+5>0(do n là số tự nhiên)

nên n-4<=0

=>n<=4

mà n là số tự nhiên

nên n∈{0;1;2;3;4}

=>B={0;1;2;3;4}

Ngọc Hân
Xem chi tiết

Để tính quãng đường khi vật đi theo cung tròn ta dùng công thức s = r · θ (với θ tính theo radian). Cho r = 500 m, θ = 60° = 60 × π/180 = π/3 rad: s = 500 × π/3 ≈ 523{,}6 m. Độ dịch chuyển chính là đoạn thẳng nối hai điểm đầu và cuối, hay có thẻ mô tả bằng dây cung trong hình tròn. Công thức d = 2 r · țỉnú sin(θ/2). Ở đây θ/2 = 30°, sin30° = 0{,}5, do đó: d = 2 × 500 × 0{,}5 = 500 m. Vậy quãng đường trên cung 60° là xấp xỉ 523{,}6 m, còn độ dịch chuyển (khoảng cách thẳng) là 500 m.

Ẩn danh
Xem chi tiết

Câu 18: B={x∈Z||x|<=4}

=>B={0;1;-1;2;-2;3;-3;4;-4}

A={-4;-2;-1;2;3;4}

A\(\cup\)X=B

=>X={-3;0;1;-4}; X={-3;0;1;-2}; X={-3;0;1;-1}; X={-3;0;1;2}; X={-3;0;1;3}; X={-3;0;1;4}

=>Có 6 tập hợp X có 4 phần tử thỏa mãn

Câu 19: Số học sinh tham gia là 45-4=41(bạn)

Số học sinh chỉ tham gia nhảy là 35-10=25(bạn)

Số học sinh chỉ tham gia hát là:

41-25-10=41-35=6(bạn)

Số học sinh tham gia hát là:

6+10=16(bạn)

Xem chi tiết