Gọi pt đường thẳng có dạng: \(y=ax+b\)
Đường thẳng qua M nên: \(6=-a+b\Rightarrow b=a+6\)
\(\Rightarrow y=ax+a+6\)
Đường thẳng cắt 2 tia Ox, Oy khi \(a\ne\left\{-6;0\right\}\)
Gọi A là giao điểm với Ox \(\Rightarrow A\left(-\dfrac{a+6}{a};0\right)\) \(\Rightarrow OA=\left|x_A\right|=\left|\dfrac{a+6}{a}\right|\)
Gọi B là giao điểm với Oy \(\Rightarrow B\left(0;a+6\right)\Rightarrow OB=\left|y_B\right|=\left|a+6\right|\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\left|\dfrac{a+6}{a}\right|.\left|a+6\right|=4\)
\(\Leftrightarrow\left|\dfrac{a^2+12a+36}{a}\right|=8\Rightarrow a^2+20a+36=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-2\\a=-18\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-2x+4\\y=-18x-12\end{matrix}\right.\)