Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tơn nguyễn

cho điểm M ( 1 ; 4 ) , viết phương trình đường thẳng qua M lần lượt cắt 2 tia Ox , tia Oy tại A và B sao cho tam giác OAB có diện tích nhỏ nhất

 

Akai Haruma
3 tháng 2 2021 lúc 23:33

Lời giải:

Vì ĐT cần tìm đi qua $M(1,4)$ nên PTĐT có dạng:

$a(x-1)+b(y-4)=0\Leftrightarrow ax+by-(a+4b)=0(d)$ với $a^2+b^2\neq 0$

$A\in Ox\Rightarrow y_A=0$

$A\in (d)\Rightarrow ax_A+by_A-(a+4b)=0$

$\Leftrightarrow ax_A-(a+4b)=0\Rightarrow x_A=\frac{a+4b}{a}$

$B\in Oy\Rightarrow x_B=0$

$B\in (d)\Rightarrow ax_B+by_B-(a+4b)=0$

$\Leftrightarrow by_B-(a+4b)=0\Rightarrow y_B=\frac{a+4b}{b}$

Diện tích tam giác $ABC$:

$\frac{OB.OA}{2}=\frac{|y_B|.|x_A|}{2}=|\frac{(a+4b)^2}{ab}|\geq |\frac{(2\sqrt{4ab})^2}{ab}|=16$

Vậy $S_{OAB}$ min $=16$. Giá trị này đạt tại $a=4b$

Thay vào PTĐT $(d)$:

$4bx+by-(4b+4b)=0$

$\Leftrightarrow b(4x+y-8)=0$. Do $a=4b$ và $a^2+b^2\neq 0$ nên $b\neq 0$

$\Rightarrow 4x+y-8=0$

Đây chính là PTĐT cần tìm.


Các câu hỏi tương tự
Chí Lê Toàn Phùng
Xem chi tiết
Linh Trần
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
Phạm Thu Trang
Xem chi tiết
Phú Phạm Minh
Xem chi tiết
Đậu Hũ Kho
Xem chi tiết
Đinh Phụng
Xem chi tiết
Phuongtrang Nguyen
Xem chi tiết
Julian Edward
Xem chi tiết