Cho ΔABC có A\(\left(\frac{-1}{4};1\right)\), B\(\left(0;3\right)\), C\(\left(3;1\right)\).
a) G là trọng tâm của ΔABC. Tính độ dài đoạn thẳng AG.
b) Tìm tọa độ điểm D có hoành độ dương sao cho ΔABD vuông cân tại B.
Cho ΔABC có AB = \(\sqrt{3}\), AC = 2, BC = 1.
a) Tính góc A và bán kính đường tròn ngoại tiếp ΔABC.
b) Cho I là điểm nằm trên đoạn BC thỏa mãn IB = \(\frac{1}{4}\)BC. Tính độ dài đoạn thẳng AI.
1. Tìm cosin góc giữa 2 đg thẳng denta 1 : 10x +5y -1=0 và denta 2 : x = 2+t ; y = 1-t
2. Tìm cosin góc giữa 2 đg thẳng denta 1: x +2y -√2=0 và denta 2: x - y =0
3. Cặp đg thẳng là phân giác của các góc hợp bởi 2 đg thẳng denta 1 : 3x +4y +1=0 và denta 2: x -2y +4=0
4. Tìm cosin góc giữa 2 đg thẳng denta 1 : 2x +3y -10=0 và denta 2: 2x -3y +4=0
5. Cho đg thẳng d : x =2+t ; y = 1-3t và 2 điểm A(1;2) , B(-2;m). Định m để A và B nằm cùng phía đối với d.
Cho hai điểm A(1;2) , B(-4;1) và đường thẳng Δ :
y = x - 1 . Tìm điểm K nằm trên ∆ sao cho : AK + BK bé nhất.
Giúp mình với ạ!!!mai mình kt rồi !!!!!! Please
cho hình tròn (C) : \(\left(x-1\right)^2+\left(y-2\right)^2=4\) và đường thẳng (d): x-y+7=0. Gọi M(a;b) là điểm thuộc (d) mà từ đó có thể kẻ được hai tiếp tuyến MA và MB tới (C) sao cho độ dài AB đạt giá trị nhỏ nhất. Khi đó a+b bằng
trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có đỉnh A(-1,2) và tâm I(1/2:0) xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD, biết đường thẳng BC đi qua điểm m(4;-3)
Chứng minh đẳng thức lượng giác
câu 1) sin(\(\frac{\text{π}}{2}\)-α)cos(π-α) = \(\frac{-1}{1+tan^2\left(\text{π}-\text{α}\right)}\)
Câu 2) sin2 (\(\frac{\text{π}}{2}\)-α)= \(\frac{1}{1+tan^2}\)
Câu3) sin6\(\frac{x}{2}\) - cos6\(\frac{x}{2}\)=\(\frac{1}{4}\) cos x (sin2x -4)
Câu 4) \(\frac{1-sin^2x}{2cot\left(\frac{\text{π}}{4}+x\right).cot^2\left(\left(\frac{\text{π}}{4}-x\right)\right)}\)
Cho \(\alpha\) là góc tù. Diều khẳng định nào sau đây đúng
A. cot \(\alpha\) >0
B. cos \(\alpha\) >0
C. tan \(\alpha\) >0
D. sin \(\alpha\)>0
Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có các đường thẳng AB, AD đi qua M (2;3) và N (-1;2). Viết phương trình các đường thẳng BC và CD biết tâm của hình chữ nhật là điểm I(5/2; 3/2) và AC=căn 26