Để tứ giác OABC là hbh<=> \(\overrightarrow{OA}=\overrightarrow{CB}\)
\(\Leftrightarrow\left(x_A;y_A\right)=\left(x_B-x_C;y_B-y_C\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}6-x_C=1\\5-y_C=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_C=5\\y_C=4\end{matrix}\right.\Rightarrow C\left(5;4\right)\)
ta có\(\overrightarrow{OA}\)=(1;1)
\(\overrightarrow{CB}\)=(6-Cx;5-Cy)
để tứ giác OABC là hbh thì \(\overrightarrow{OA}=\overrightarrow{CB}\)
=>\(\left\{{}\begin{matrix}6-C_X=1\\5-C_Y=1\end{matrix}\right.\)=>C(5;4)