\(C=\dfrac{20\sqrt{x}-16\sqrt{x}-8}{2\sqrt{x}+1}=\dfrac{20\sqrt{x}-8\left(2\sqrt{x}+1\right)}{2\sqrt{x}+1}=\dfrac{20\sqrt{x}}{2\sqrt{x}+1}-8\)
Do \(\left\{{}\begin{matrix}20\sqrt{x}\ge0\\2\sqrt{x}+1>0\end{matrix}\right.\) ; \(\forall x\Rightarrow\dfrac{20\sqrt{x}}{2\sqrt{x}+1}\ge0\) ; \(\forall x\)
\(\Rightarrow C\ge-8\)
\(C_{min}=-8\) khi \(x=0\)