Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyenlinh

rút gọn \(P=\left(\sqrt{x}-\dfrac{x+2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}-4}{1-x}\right)\)

tìm giá trị nhỏ nhất của P

Akai Haruma
31 tháng 5 2023 lúc 11:08

Lời giải:

ĐKXĐ: $x\geq 0; x\neq 1$

\(P=\frac{x+\sqrt{x}-(x+2)}{\sqrt{x}+1}:\left[\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{\sqrt{x}-4}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)

\(=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-\sqrt{x}+\sqrt{x}-4}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{\sqrt{x}-2}{\sqrt{x}+1}.\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{(\sqrt{x}-2)(\sqrt{x}+2)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\)

Với mọi $x\geq 0; x\neq 1$ thì $\sqrt{x}+2\geq 2$

$\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}$

$\Rightarrow P=1-\frac{3}{\sqrt{x}+2}\geq 1-\frac{3}{2}=\frac{-1}{2}$
Vậy $P_{\min}=\frac{-1}{2}$ khi $x=0$


Các câu hỏi tương tự
Yết Thiên
Xem chi tiết
ok bạn ê
Xem chi tiết
Pham Thi Phuong Cham
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Quỳnh 9/2 Mai
Xem chi tiết
Lê Quỳnh Chi Phạm
Xem chi tiết
Ly Ly
Xem chi tiết
Ahihi
Xem chi tiết
Yết Thiên
Xem chi tiết