\(4S\sqrt{3}=4\sqrt{3}\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\le4\sqrt{3}\sqrt{p\left(\frac{p-a+p-b+p-c}{3}\right)^3}\)
\(\Rightarrow4S\sqrt{3}\le4\sqrt{3}\sqrt{\frac{p^4}{27}}=\frac{4p^2}{3}=\frac{4}{3}\left(\frac{a+b+c}{2}\right)^2\)
\(\Rightarrow4S\sqrt{3}\le\frac{1}{3}\left(a+b+c\right)^2\le a^2+b^2+c^2\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Do đó tam giác ABC đều