Chứng minh trong tam giác ABC:
a. b\(^2-c^2\) = a.(b.cosC - c.cosB)
b. \(\left(b^2-c^2\right)\)cosA = a. (c. cosC - b.cosB)
c. cotA + cotB + cotC = \(\dfrac{a^2+b^2+c^2}{abc}\). R
cho tam giác ABC, gọi S là diện tích của tam giác ABC. CM:
\(cotA=\frac{b^2+c^2-a^2}{4S}\)
\(cotA+cosB+cosC=\frac{a^2+b^2+c^2}{4S}\)
\(\Delta ABC\) có: \(\left\{{}\begin{matrix}\sin A+\sin C=3\sin B\\\sin^2\frac{A}{2}+\sin^2\frac{C}{2}=\frac{2}{3}\end{matrix}\right.\). Tính số đo 3 góc
CMR:
a, \(r=\frac{a\cdot\sin\frac{B}{2}\cdot\sin\frac{C}{2}}{\cos\frac{A}{2}}\)
b, \(S=\frac{1}{2}\sqrt{\overrightarrow{AB}^2\cdot\overrightarrow{AC}^2}-\left(\overrightarrow{AB}\cdot\overrightarrow{AC}\right)^2\)
Cho tam giác ABC. Đẳng thức nào sai?
A. sin(A+B-2C)= sin3C B. cos\(\frac{B+C}{2}\)= sin\(\frac{A}{2}\)
C. sin(A+B)= sinC D. cos\(\frac{A+B+2C}{2}\)= sin\(\frac{C}{2}\)
CMR trong mọi tam giác ABC
a) r + ra + rb - r = 4R.cosC
b)tan\(\frac{B}{2}\). tan \(\frac{C}{2}\) = \(\frac{h_a-2r}{h_a}\) = \(\frac{h_a}{2r_a+h_a}\)
c) cos\(\frac{A}{2}\) = \(\sqrt{\frac{p\left(p-a\right)}{bc}}\) ; tan\(\frac{A}{2}\) = \(\sqrt{\frac{\left(p-b\right)\left(p-c\right)}{p\left(p-a\right)}}\)
\(\Delta ABC\) thỏa mãn: \(\sin\frac{B}{2}\cdot\sin\frac{C}{2}=\frac{\sqrt{bc}}{4a}\). CMR: \(\Delta ABC\) là tam giác đều
Cmr trong mọi tam giác ABC
a) a = b.\(\cos C\) + c.\(\cos B\)
b) a = r(\(\cot\frac{B}{2}\) + \(\cot\frac{C}{2}\))
c) ra = p.\(\tan\frac{A}{2}\)
d) r = (p - a).\(\tan\frac{A}{2}\)
Bài 1: Cho tam giác ABC vuông tại A.CMR: \(m^2_b +m^2_c =5m^2_a\)
Bài 2: Cho tam giác ABC thỏa mãn \(\frac{a^3+b^3-c^3}{a+b-c}=c^2\). Tìm số đo của \(\widehat{C}\)
Bài 3: Nhận dạng tam giác ABC nếu \(\frac{a^3+c^3-b^3}{a+c-b}=b^2\) và \(sinA.sinC=\frac{3}{4}\)