\(A^2=\left(\sqrt{6-x}+\sqrt{x+2}\right)^2\)
Áp dụng Bu-nhi-a-cốp-xki:
\(A^2=\left(\sqrt{6-x}+\sqrt{x+2}\right)^2\le\left(1+1\right)8=16\)
=> A ≤ 4
Dấu = xảy ra khi: \(\dfrac{1}{\sqrt{6-x}}=\dfrac{1}{\sqrt{x+2}}\)
\(\Rightarrow6-x=x+2\)
=> x = 2
Áp dụng BĐT: \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)
\(A\le\sqrt{2\left(6-x+x+2\right)}=4\)
\(A_{max}=4\) khi \(6-x=x+2\Rightarrow x=2\)