Cho tanα = √3 với 0 < α < π/2. Tính sinα, cos2α, sin(2α - π/3), tan(α + π/4)
Mọi người giúp em giải câu này với :Chứng minh rằng (Tan2x/1+tan2x)(1+cot2x/cotx)=1+tan4x/tan2x+cot2x
Cm: (Cot a+tan a)2-(cot a - tan a)2 =2
Cho \(\sin x=\frac{-1}{3}\).
Tính P=\(cos\left(2\pi-x\right).tan\left(\pi+x\right)-tan\left(\frac{\pi}{2}-x\right).cot\left(\pi-x\right)\).
Chứng minh rằng: \(\frac{sin^2\alpha-cos^2\alpha}{1+2sin\alpha cos\alpha}=\frac{tan\alpha-1}{tan\alpha+1}\)
Sina / [sina + cosa × tan (a/2)]
Chứng minh :
a) ( tan2x - tanx )cos 2x = tan x
b) 2(1-sinx)(1+cosx) = (1-sinx+cosx)2
c) 1 + cotx + cot2x + cot3x = cosx+sinx / sin3x
d) cos3x/sinx + sin3x/cosx = 2cot2x
Tính:
a) P=\(\dfrac{√3.(tan 30°) - cos 60°.cot 30° - 2√2.(sin 45°)}{√6.sin 90°.cos45°.sin 60°}\)
Cho \(\sin\alpha=\frac{-3}{5}\) ( \(\frac{3\pi}{2}< \alpha< 2\pi\))
a) Tính các giá trị lượng giác còn lại.
b) Tính \(\sin2\alpha,\cos2\alpha,tan\left(\alpha+\frac{\pi}{4}\right)\)
c) Tính \(\cos\left(\frac{\pi}{4}-2\right)\) , \(\sin\left(\alpha+\frac{\pi}{4}\right)\)
d) Tính giá trị của biểu thức:
\(M=\frac{Sin^2\alpha-C\text{os}^22\alpha}{tan\alpha}\)