\(D=\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}\)
\(ĐK:\left\{{}\begin{matrix}x\ge0\\x\ne2\end{matrix}\right.\)
\(D=\dfrac{x\sqrt{2}}{\sqrt{2x}\left(\sqrt{2}+\sqrt{x}\right)}+\dfrac{\sqrt{2}\left(\sqrt{x}-\sqrt{2}\right)}{\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{2}\right)}\)
\(D=\dfrac{\sqrt{x}}{\left(\sqrt{2}+\sqrt{x}\right)}+\dfrac{\sqrt{2}}{\sqrt{x}+\sqrt{2}}\)
\(D=\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2}+\sqrt{x}}\)
\(D=1\)
Với `x >= 0,x \ne 2` có:
`D=[x\sqrt{2}]/[2\sqrt{x}+x\sqrt{2}]+[\sqrt{2x}-2]/[x-2]`
`D=[\sqrt{x}.\sqrt{2x}]/[\sqrt{2x}(\sqrt{2}+\sqrt{x})]+[\sqrt{2}(\sqrt{x}-\sqrt{2})]/[(\sqrt{x}-\sqrt{2})(\sqrt{x}+\sqrt{2})]`
`D=\sqrt{x}/[\sqrt{2}+\sqrt{x}]+\sqrt{2}/[\sqrt{x}+\sqrt{2}]`
`D=[\sqrt{x}+\sqrt{2}]/[\sqrt{x}+\sqrt{2}]=1`