\(=cosa\cdot sina-1-1+sina\cdot cosa+2\)
\(=2\cdot sina\cdot cosa=sin2a\)
\(=cosa\cdot sina-1-1+sina\cdot cosa+2\)
\(=2\cdot sina\cdot cosa=sin2a\)
Cho 0°<β<90°. Xét dấu biểu thức:
A= sin (90°+β) . sin(90°-β0. cot( 180°-β)
Cho tanα = 3, 90 < α < 180. Tính giá trị biểu thức
A= \(\frac{sin\alpha+sin^2\alpha.\text{cos}\alpha+\text{cos}^3\alpha}{sin^3\alpha-sin\alpha.\text{cos}^2\alpha-\text{cos}^3\alpha}\)
Rút gọn các biểu thức sau:
A= \(\dfrac{cos^2\alpha-sin^2\alpha}{cot^2\alpha-tan^2\alpha}-cos^2\alpha\)
B= \(\sqrt{sin^4\alpha+6cos^2\alpha+3cos^4\alpha}+\sqrt{cos^4\alpha+6sin^2\alpha+3sin^4\alpha}\)
Đơn giản các biểu thức sau:
a) sin a.\(\sqrt{1+tan^2a}\)
b) \(\frac{1-cos^2x}{1-sịn^2x}+tanx.cotx\)
c) \(\frac{1-4sin^2x.cos^2x}{\left(sinx+cosx\right)^2}\)
d) sin(90o-x)+cos(1800-x)+sin2x(1+tan2x)-tan2x
chứng minh các biểu thức sau không phụ thuộc vào α
A=\(\dfrac{\sin^4\alpha+\cos^4\alpha-1}{\sin^6\alpha+\cos^6\alpha+3\cos^4\alpha-1}\)
B=\(\cot^230\left(\sin^8\alpha-\cos^8\alpha\right)+4\cos60\left(\cos^6\alpha-\sin^6\alpha\right)-\sin^6\left(90-\alpha\right)\left(\tan^2-1\right)^3\)
rút gọn biểu thức lượng giác
\(\frac{\sin x+\cos x-1}{\sin x-\cos x+1}=\frac{\cos x}{1+\sin x}\)
rút gọn biểu thức:
a, tan2α -sin2α
Tính giá trị biểu thức sau: (giúp mình vớiiii)
\(C=\dfrac{2\sin^3\alpha-3\cos^2\alpha\sin\alpha}{\cos\alpha\sin^2\alpha-2\cos\alpha}\)
Ví dụ 3: Chứng minh rằng biểu thức sau độc lập với x,y: A= \(\frac{\cos^2x-\sin^2y}{sin^2x\cdot sin^2y}-cot^2x\cdot cot^2y\)