\(\rightarrow\left(x-\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\\ \rightarrow x-\dfrac{1}{2}=\dfrac{1}{4}\\ x=\dfrac{1}{4}+\dfrac{1}{2}\\ x=\dfrac{3}{4}\)
\(\left(x-\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(x-\dfrac{1}{2}=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}+\dfrac{1}{2}\)
\(x=\dfrac{3}{4}\)
\(\left(x-\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\)
\(x-\dfrac{1}{2}=\pm\dfrac{1}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{1}{4}\\x-\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}+\dfrac{1}{2}\\x=-\dfrac{1}{4}+\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy ....
`(x-1/2)^2 = 1/16`
`=>` \(\left[{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\\\left(x-\dfrac{1}{2}\right)^2=\left(-\dfrac{1}{4}\right)^2\end{matrix}\right.\)
`<=>` \(\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{1}{4}\\x-\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\)
`<=> \(\left[{}\begin{matrix}x=\dfrac{1}{4}+\dfrac{1}{2}\\x=-\dfrac{1}{4}+\dfrac{1}{2}\end{matrix}\right.\)
`<=>` \(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
\(\left(x-\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Leftrightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{1}{4}\\x-\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)