Bài 5. ÔN TẬP CUỐI NĂM

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thùy Chi

GPT

\(\sqrt{x^2-2x+3}-\sqrt{x^2-6x+11}=\sqrt{3-x}-\sqrt{x-1}\)

Akai Haruma
29 tháng 2 2020 lúc 19:16

Lời giải:
ĐK: $1\leq x\leq 3$

PT \(\Leftrightarrow \frac{x^2-2x+3-(x^2-6x+11)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}=\frac{3-x-(x-1)}{\sqrt{3-x}+\sqrt{x-1}}\)

\(\Leftrightarrow \frac{4(x-2)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2(x-2)}{\sqrt{3-x}+\sqrt{x-1}}=0\)

\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2}{\sqrt{3-x}+\sqrt{x-1}}\right]=0\)

Dễ thấy biểu thức trong ngoặc vuông lớn hơn $0$ nên $x-2=0$

$\Rightarrow x=2$ (t/m)

Vậy.......

Khách vãng lai đã xóa
Akai Haruma
3 tháng 3 2020 lúc 0:35

Lời giải:
ĐK: $1\leq x\leq 3$

PT \(\Leftrightarrow \frac{x^2-2x+3-(x^2-6x+11)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}=\frac{3-x-(x-1)}{\sqrt{3-x}+\sqrt{x-1}}\)

\(\Leftrightarrow \frac{4(x-2)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2(x-2)}{\sqrt{3-x}+\sqrt{x-1}}=0\)

\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2}{\sqrt{3-x}+\sqrt{x-1}}\right]=0\)

Dễ thấy biểu thức trong ngoặc vuông lớn hơn $0$ nên $x-2=0$

$\Rightarrow x=2$ (t/m)

Vậy.......

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đỗ Thị Ánh Nguyệt
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết
poppy Trang
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết
Phan Nguyễn Hoàng Vinh
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết
Karry Angel
Xem chi tiết