Bài 5. ÔN TẬP CUỐI NĂM

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hằng hồ thị hằng

Giải các bất phương trình sau:

1, \(\sqrt{5x+1}-\sqrt{4x-1}\le3\sqrt{x}\)

2, \(\sqrt{5x^2+10x+1}\ge7-x^2-2x\)

3, \(x^2-1< \sqrt{x-1}+\sqrt{2x}\)

4, \(3\sqrt{x^3+1}+4x^2-5x+3\ge0\)

5*, \(\sqrt{x^2-x-2}+3\sqrt{x}\le\sqrt{5x^2-4x-6}\)

Mng giúp mình vs ạ!!!

Nguyễn Việt Lâm
15 tháng 7 2020 lúc 10:41

a/

ĐKXĐ: \(x\ge\frac{1}{4}\)

\(\Leftrightarrow\sqrt{5x+1}\le\sqrt{4x-1}+3\sqrt{x}\)

\(\Leftrightarrow5x+1\le13x-1+6\sqrt{x\left(4x-1\right)}\)

\(\Leftrightarrow3\sqrt{x\left(4x-1\right)}\ge1-4x\)

Do \(x\ge\frac{1}{4}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP\le0\end{matrix}\right.\) BPT luôn đúng

Vậy nghiệm của BPT đã cho là \(x\ge\frac{1}{4}\)

Nguyễn Việt Lâm
15 tháng 7 2020 lúc 10:48

b/

ĐKXĐ: \(\left[{}\begin{matrix}x\ge\frac{-5+2\sqrt{5}}{5}\\x\le\frac{-5-2\sqrt{5}}{5}\end{matrix}\right.\)

Đặt \(\sqrt{5x^2+10x+1}=t\ge0\Rightarrow x^2+2x=\frac{t^2-1}{5}\)

BPT trở thành:

\(t\ge7-\frac{t^2-1}{5}\Leftrightarrow t^2+5t-36\ge0\)

\(\Rightarrow\left[{}\begin{matrix}t\le-9\left(l\right)\\t\ge4\end{matrix}\right.\)

\(\Rightarrow\sqrt{5x^2+10x+1}\ge4\)

\(\Leftrightarrow5x^2+10x-15\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\)

Nguyễn Việt Lâm
15 tháng 7 2020 lúc 10:52

c/

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow x^2-4+1-\sqrt{x-1}+2-\sqrt{2x}< 0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\frac{x-2}{1+\sqrt{x-1}}-\frac{2\left(x-2\right)}{2+\sqrt{2x}}< 0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-\frac{1}{1+\sqrt{x-1}}-\frac{2}{2+\sqrt{2x}}\right)< 0\)

\(\Leftrightarrow\left(x-2\right)\left(x+\frac{\sqrt{x+1}}{1+\sqrt{x-1}}+\frac{\sqrt{2x}}{2+\sqrt{2x}}\right)< 0\)

\(\Leftrightarrow x-2< 0\Rightarrow x< 2\) (phần trong ngoặc to luôn dương)

Vậy nghiệm của BPT là \(1\le x< 2\)

Nguyễn Việt Lâm
15 tháng 7 2020 lúc 10:58

d/

ĐKXĐ: \(x\ge-1\)

\(3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+4x^2-5x+3\ge0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow4a^2-b^2=4x^2-5x+3\)

BPT trở thành:

\(4a^2+3ab-b^2\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(4a-b\right)\ge0\)

\(\Leftrightarrow4a-b\ge0\Rightarrow4a\ge b\)

\(\Rightarrow4\sqrt{x^2+x+1}\ge\sqrt{x+1}\)

\(\Leftrightarrow16x^2+16x+4\ge x+1\)

\(\Leftrightarrow16x^2+15x+3\ge0\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le\frac{-15-\sqrt{33}}{32}\\x\ge\frac{-15+\sqrt{33}}{32}\end{matrix}\right.\)

Nguyễn Việt Lâm
15 tháng 7 2020 lúc 11:06

e/

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow x^2+8x-2+6\sqrt{x\left(x+1\right)\left(x-2\right)}\le5x^2-4x-6\)

\(\Leftrightarrow3\sqrt{x\left(x+1\right)\left(x-2\right)}\le2x^2-6x-2\)

\(\Leftrightarrow3\sqrt{\left(x^2-2x\right)\left(x+1\right)}\le2x^2-6x-2\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2x}=a\ge0\\\sqrt{x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2-2b^2=2x^2-6x-2\)

BPT trở thành:

\(3ab\le2a^2-2b^2\Leftrightarrow2a^2-3ab-2b^2\ge0\)

\(\Leftrightarrow\left(2a+b\right)\left(a-2b\right)\ge0\)

\(\Leftrightarrow a\ge2b\Rightarrow\sqrt{x^2-2x}\ge2\sqrt{x+1}\)

\(\Leftrightarrow x^2-2x\ge4x+4\)

\(\Leftrightarrow x^2-6x-4\ge0\)

\(\Rightarrow x\ge3+\sqrt{13}\)


Các câu hỏi tương tự
Linh Châu
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Phan Nguyễn Hoàng Vinh
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Cathy Trang
Xem chi tiết
adfghjkl
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết