Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hải Anh

Giải hpt:

\(\left\{\begin{matrix}2x^3+3x^2y=5\\y^3+6xy^2=7\end{matrix}\right.\)

Akai Haruma
31 tháng 1 2017 lúc 23:34

Lời giải:

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} 7(2x^3+3x^2y)=35\\ 5(y^3+6xy^2)=35\end{matrix}\right.\Rightarrow 14x^3+21x^2y-5y^3-30xy^2=0(1)\)

Nhận thấy $x,y\neq 0$ nên đặt \(x=ty(t\neq 0)\). Thay vào $(1)$ ta được:

\(14t^3y^3+21t^2y^3-5y^3-30ty^3=0\)

\(\Leftrightarrow 14t^3+21t^2-30t-5=0\Leftrightarrow (t-1)(14t^2+35t+5)=0\)

Nếu \(t=1\Rightarrow x=y\rightarrow 7y^3=7\Rightarrow y=1\rightarrow x=1\)

Nếu \(14t^2+35t+5=0\Rightarrow \left[ \begin{array}{ll}t=\frac{-35+3\sqrt{105}}{28} \\ \\ t=\frac{-35-3\sqrt{105}}{28}\end{array} \right.\)

Ta có \(y^3+6xy^2=y^3+6ty^3=7\Rightarrow y^3=\frac{7}{6t+1}\)

Thay vào ta tìm được \(\left[ \begin{array}{ll}y=\frac{7+\sqrt{105}}{4} \rightarrow x=\frac{5-\sqrt{105}}{8} \\ \\ y=\frac{7-\sqrt{105}}{4}\rightarrow x=\frac{5+\sqrt{105}}{8}\end{array} \right.\)

Ta có cặp nghiệm \((x,y)=(1,1),\left ( \frac{5+\sqrt{105}}{8},\frac{7-\sqrt{105}}{4} \right ),\left ( \frac{5-\sqrt{105}}{8},\frac{7+\sqrt{105}}{4} \right )\)


Các câu hỏi tương tự
Như
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Võ Thị Kim Dung
Xem chi tiết
Hải Anh
Xem chi tiết
Hải Anh
Xem chi tiết
Hải Anh
Xem chi tiết
Võ Thị Kim Dung
Xem chi tiết
Hải Anh
Xem chi tiết
Hải Anh
Xem chi tiết