Lời giải:
\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} 7(2x^3+3x^2y)=35\\ 5(y^3+6xy^2)=35\end{matrix}\right.\Rightarrow 14x^3+21x^2y-5y^3-30xy^2=0(1)\)
Nhận thấy $x,y\neq 0$ nên đặt \(x=ty(t\neq 0)\). Thay vào $(1)$ ta được:
\(14t^3y^3+21t^2y^3-5y^3-30ty^3=0\)
\(\Leftrightarrow 14t^3+21t^2-30t-5=0\Leftrightarrow (t-1)(14t^2+35t+5)=0\)
Nếu \(t=1\Rightarrow x=y\rightarrow 7y^3=7\Rightarrow y=1\rightarrow x=1\)
Nếu \(14t^2+35t+5=0\Rightarrow \left[ \begin{array}{ll}t=\frac{-35+3\sqrt{105}}{28} \\ \\ t=\frac{-35-3\sqrt{105}}{28}\end{array} \right.\)
Ta có \(y^3+6xy^2=y^3+6ty^3=7\Rightarrow y^3=\frac{7}{6t+1}\)
Thay vào ta tìm được \(\left[ \begin{array}{ll}y=\frac{7+\sqrt{105}}{4} \rightarrow x=\frac{5-\sqrt{105}}{8} \\ \\ y=\frac{7-\sqrt{105}}{4}\rightarrow x=\frac{5+\sqrt{105}}{8}\end{array} \right.\)
Ta có cặp nghiệm \((x,y)=(1,1),\left ( \frac{5+\sqrt{105}}{8},\frac{7-\sqrt{105}}{4} \right ),\left ( \frac{5-\sqrt{105}}{8},\frac{7+\sqrt{105}}{4} \right )\)