Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Giải các hệ phương trình :

a) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}\left(x-1\right)^2-2y=2\\3\left(x-1\right)^2+3y=1\end{matrix}\right.\)

katherina
25 tháng 4 2017 lúc 13:55

a. ĐK: \(x\ge1;y\ge1\)

Đặt \(\sqrt{x-1}=a\left(a\ge0\right)\)\(\sqrt{y-1}=b\left(b\ge0\right)\)

Khí đó hệ phương trình trở thành:

\(\left\{{}\begin{matrix}2a-b=1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a-1\\a+2a-1=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2.1-1\\a=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=1\end{matrix}\right.\)(tm)

* a = 1 \(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)(tmđk)

* b = 1 \(\sqrt{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow y=2\) (tmđk)

Vậy nghiệm của hệ phương trình là (2;2)

katherina
25 tháng 4 2017 lúc 14:10

b. Đặt \(\left(x-1\right)^2=a\) ( a \(\ge\) 0)

Khi đó hệ phương trình đã cho trở thành :

\(\left\{{}\begin{matrix}a-2y=2\\3a+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2+2y\\3\left(2+2y\right)+3y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2+2.\left(-\dfrac{5}{9}\right)\\y=-\dfrac{5}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{8}{9}\\y=-\dfrac{5}{9}\end{matrix}\right.\)(tmđk)

* a = \(\dfrac{8}{9}\Leftrightarrow\) \(\left(x-1\right)^2=\dfrac{8}{9}=\left(\pm\dfrac{2\sqrt{2}}{3}\right)^2\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\sqrt{2}}{3}+1\\x=-\dfrac{2\sqrt{2}}{3}+1\end{matrix}\right.\)

Vậy nghiệm của hệ phương trình là \(\left(\dfrac{2\sqrt{2}}{3};-\dfrac{5}{9}\right);\left(\dfrac{-2\sqrt{2}}{3};-\dfrac{5}{9}\right)\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Lưu Thị Thảo Ly
Xem chi tiết
Nguyễn Thùy Dương
Xem chi tiết
Lưu Thị Thảo Ly
Xem chi tiết
phantuananh
Xem chi tiết
Lê Chí Cường
Xem chi tiết
Nguyễn Thị Huyền Mai
Xem chi tiết
Nguyễn Đình Dũng
Xem chi tiết
Đặng Minh Triều
Xem chi tiết