Lời giải:
Gọi biểu thức trên là $A$. Ta có:
\(A=\frac{x^2+2xy+y^2}{4}+\frac{3x^2+3y^2+2xy}{4}-2(x+y)+\frac{13}{3}\)
\(=(\frac{x+y}{2})^2-2(x+y)+4+\frac{3x^2+3y^2+2xy}{4}+\frac{1}{3}\)
\(=(\frac{x+y}{2}-2)^2+\frac{(x+y)^2+2(x^2+y^2)}{4}+\frac{1}{3}\)
\(\geq 0+\frac{0+2(0+0)}{4}+\frac{1}{3}>0\) với mọi $x,y\in\mathbb{R}$
Ta có đpcm.