Bạn cần làm gì với biểu thức này?
Bạn cần làm gì với biểu thức này?
Rút gọn các biểu thức sau:
a) A = \(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\)
b) B = \(\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
c) C = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2+\sqrt{x}}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
d) D = \(\sqrt{\dfrac{a+x^2}{x}-2\sqrt{a}}-\sqrt{\dfrac{a+x^2}{x}+2\sqrt{a}}\) với a > 0, x > 0.
Cho 2 số dương x,y. Chứng minh: \(\dfrac{2015}{2016}\sqrt{\dfrac{x}{y}}+\dfrac{2016}{2017}\sqrt{\dfrac{y}{x}}>1+\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{6\sqrt{xy}}\)
Hãy cho bt các biểu thức dưới có phụ thuộc vào biến số hay k?
a) \(A=\left(\dfrac{\sqrt{x}-\sqrt{y}}{x-y}+\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}+1}{\sqrt{x}+\sqrt{y}}\)
b) \(B=3x-1-\sqrt{x^2-6x+9}\)
\(\dfrac{\sqrt{xy}+y\sqrt{x}}{\sqrt{xy}}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)_{ }^2}{\sqrt{x}-\sqrt{y}}\)
1 nhân chia căn bậc hai
a/\(\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{3\dfrac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{0,2}\right)\)
b/ \(\left(\dfrac{3x}{2}\sqrt{\dfrac{x}{2y}}-0,4\sqrt{\dfrac{2}{xy}}+\dfrac{1}{3}\sqrt{\dfrac{xy}{2}}\right):\dfrac{4}{15}\sqrt{\dfrac{2x}{3y}}\)
2 Cộng trừ căn bậc hai
a/ \(0,1\sqrt{200}-2\sqrt{0,08}+4\sqrt{0,5}+0,4\sqrt{50}\)
b/ \(\dfrac{2}{3}x\sqrt{9x}+6x\sqrt{\dfrac{x}{4}-x^2}\sqrt{\dfrac{1}{x}}\)
Cho các số thực dương \(x,y,z\) thỏa mãn: \(xy+yz+xz=1\). Hãy tính giá trị biểu thức: \(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^2}-\sqrt{y^2}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn A
b) Chứng minh A ≥0
\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2-4\sqrt{xy}}{1+\sqrt{xy}}\) với ( x = 2, y = 1)
rút gọn biểu thức: P=\(\dfrac{4\sqrt{xy}}{x-y}\):\(\left(\dfrac{1}{y-x}+\dfrac{1}{x+2\sqrt{x}\sqrt{y}+y^2}\right)\)-2x