\(=\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{x-y-x-2\sqrt{xy}-y}{\sqrt{x}-\sqrt{y}}=\dfrac{-2\sqrt{y}-2\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
\(=\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{x-y-x-2\sqrt{xy}-y}{\sqrt{x}-\sqrt{y}}=\dfrac{-2\sqrt{y}-2\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
Bài 2. Cho A=\(\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}\) :\([\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\dfrac{1}{xy+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)]\)
\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^2}-\sqrt{y^2}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn A
b) Chứng minh A ≥0
Rút gọn:
n) N = \(\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right)\left(\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\right)^2\)
o) O = \(\left(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{a-b}{\sqrt{a}-\sqrt{ }b}\right)^2\)
p) P = \(\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\)
q) Q = \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\dfrac{x+xy}{1-xy}\)
Rút gọn các biểu thức sau:
a) A = \(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\)
b) B = \(\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
c) C = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2+\sqrt{x}}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
d) D = \(\sqrt{\dfrac{a+x^2}{x}-2\sqrt{a}}-\sqrt{\dfrac{a+x^2}{x}+2\sqrt{a}}\) với a > 0, x > 0.
Hãy cho bt các biểu thức dưới có phụ thuộc vào biến số hay k?
a) \(A=\left(\dfrac{\sqrt{x}-\sqrt{y}}{x-y}+\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}+1}{\sqrt{x}+\sqrt{y}}\)
b) \(B=3x-1-\sqrt{x^2-6x+9}\)
Chứng minh rằng biểu thức sau không phụ thuộc vào biến
A = \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\)
B = \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\)
Chứng minh rằng biểu thức sau không phụ thuộc vào biến
A = \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\)
B = \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\)
Chứng minh rằng: A = \(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)không phụ thuộc vào x;y với x > 0 và y > 0
Các bạn lm chi tiết giúp mk nhé!
Cho 2 số dương x,y. Chứng minh: \(\dfrac{2015}{2016}\sqrt{\dfrac{x}{y}}+\dfrac{2016}{2017}\sqrt{\dfrac{y}{x}}>1+\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{6\sqrt{xy}}\)