\(\frac{sin^22x-4sin^2x}{sin^22x-4\left(1-sin^2x\right)}=\frac{4sin^2x.cos^2x-4sin^2x}{4sin^2x.cos^2x-4cos^2x}=\frac{sin^2x\left(cos^2x-1\right)}{cos^2x\left(sin^2x-1\right)}=\frac{-sin^4x}{-cos^4x}=tan^4x\)
\(\frac{sin^22x-4sin^2x}{sin^22x-4\left(1-sin^2x\right)}=\frac{4sin^2x.cos^2x-4sin^2x}{4sin^2x.cos^2x-4cos^2x}=\frac{sin^2x\left(cos^2x-1\right)}{cos^2x\left(sin^2x-1\right)}=\frac{-sin^4x}{-cos^4x}=tan^4x\)
\(\sin^4\frac{\pi}{16}+\sin^4\frac{3\pi}{16}+\sin^4\frac{5\pi}{16}+\sin^4\frac{7\pi}{16}=\frac{3}{2}\)
cm đẳng thức trên
Chứng minh rằng: \(\frac{sin^3\alpha+cos^3\alpha}{sin\alpha+cos\alpha}=1-sin\alpha cos\alpha\)
Cho tam giác ABC . chứng minh rằng :
sin A. cos B. Cos C + sin B. Cos C. Cos A + sin C . cos B .cos A = sin A . Sin B. Sin C
rút gọn biểu thức
C=\(\sin x.\cos\left(2x+\frac{\Pi}{6}\right).\cos\left(2x-\frac{\Pi}{6}\right)+\sin3x.\sin\left(x+\frac{\Pi}{6}\right).\sin\left(x-\frac{\Pi}{6}\right)\)
Chứng minh rằng: \(\frac{sin^2\alpha-cos^2\alpha}{1+2sin\alpha cos\alpha}=\frac{tan\alpha-1}{tan\alpha+1}\)
Cho tanα = √3 với 0 < α < π/2. Tính sinα, cos2α, sin(2α - π/3), tan(α + π/4)
1.Rút gọn P= sin4x + cos4x ta được a - b/c.sin22x. Tinh a+3b+c.
2. Chứng minh: sin(A-B)/sinC = (a2-b2)/c2 (a;b;c là 3 cạnh của tam giác)
3. Nhận dạng tam giác biết rằng :
a) sinA = (cosA+cosB)/ (sinB+sinC)
b) 2sinBsinC = 1 + cosA
Chứng minh: sin (x + α) + sin (x + 2α) + sin(x + 3α) +...+ sin(x + 100α) = 0
cho tan\(x\)=-3. tính giá trị của biểu thức A= \(\frac{sin^2x+sinx.cosx+5}{3sin^2x-2cos^2x}\)