Gọi M là trung điểm của AB
Ta có:\(\overrightarrow{CI}=\frac{\overrightarrow{CM}+\overrightarrow{CB}}{2}=\frac{\frac{\overrightarrow{CA}+\overrightarrow{CB}}{2}+\overrightarrow{CB}}{2}=\frac{1}{4}\overrightarrow{CA}+\frac{3}{4}\overrightarrow{CB}\)
Gọi M là trung điểm của AB
Ta có:\(\overrightarrow{CI}=\frac{\overrightarrow{CM}+\overrightarrow{CB}}{2}=\frac{\frac{\overrightarrow{CA}+\overrightarrow{CB}}{2}+\overrightarrow{CB}}{2}=\frac{1}{4}\overrightarrow{CA}+\frac{3}{4}\overrightarrow{CB}\)
Cho tam giác ABC xác định điểm I thỏa:
a/ 2 vecto IA + vecto IB - vecto IC = vecto 0
b/ 2 vecto IA + 3 vecto IB - vecto IC = vecto 0
c/ 3 vecto IA - vecto IB + 2 vecto IC = vecto 0
Cho tam giác ABC và điểm I thỏa mãn vecto IA=-2 vecto IB. Biểu diễn vecto IC theo các vecto AB, vecto AC
Cho ∆ABC có trọng tâm G, điểm I thỏa vecto IA = 2 vecto IB
Chứng minh vecto IG = -5/3 vecto AB + 1/3 vecto AC
cho tam giác ABC .Trên các đường thẳng BC,AC,AB lần lượt lấy các điểm M,N,P sao cho vecto MB=3 vecto MC ,NA= 3vecto CN , vecto PA+vecto PB = vecto 0
a. tính vecto PM,vecto PN theo vecto AB , vecto AC
b. CM :M,N,P thẳng hàng
CẢM ƠN MỌI NGƯỜI
Cho tứ giác ABCD trên cạnh AB, CD lần lượt lấy các điểm M,N sao cho 3vecto AM=2AB và 3vecto DN =2 vecto DC. Tính vecto MN theo hai vecto AD, vecto BC
αtam giác abc có trọng tâm g.lấy i,j là 2 điểm thỏa:
2 vecto ia+3 vecto ic=vecto không
2 vecto ja+5vecto jb+3 jc+vecto không.c/m:ij qua g
1. Cho tam giác ABC có M,N,P là trung điểm BC, CA,AB. CMR:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
2. Cho tam giác ABC có I, J thỏa mãn: \(\overrightarrow{IA}=2\overrightarrow{IB},3\overrightarrow{JA}+2\overrightarrow{JC}=\overrightarrow{0}\), G là trọng tâm tam giác ABC.
a, Biểu thị vecto AI,AJ, AG theo vecto AB,AC
b CMR I,J,G thẳng hàng
1. Cho tam giác ABC
a. Dựng điểm R sao cho vecto AR= 1/3 vecto AB + 1/3 vecto AC
b. Gọi M là trung điểm cạnh AC. Cmr A,B,M thẳng hàng
2. Cho hình bình hành ABCD và 2 điểm E,F thoả mãn vecto DF= vecto CE = 1/3DC
Gọi I là giao điểm của AF và DB, J là giao điểm của AE và BC
a. Tính vecto AE theo vecto AJ
b. Cmr tứ giác ABEF là hình bình hành
c. Tính vecto DF theo vecto DE và tính vecto DI theo vecto DB. Cmr IJ // DC
3. Cho tam giác ABC và I,J là 2 điểm thoả mãn các hệ thức vecto
2IA +3IB -IC=0
2JA +3JB=0
a. -Biểu diễn vecto AI theo vecto AB và vecto AC
-Biểu diễn vecto CJ theo vecto CA và vecto CB
b. P,Q theo 2 điểm thoả mãn hệ thức vecto PQ= 2vecto PA+ 3 vecto PB - vecto PC
Cmr P,Q,I thẳng hàng
c. Gọi M là trung điểm của CQ. CM là đường thẳng PM đi qua J
4. Cho 2 điểm A,B cố định.Tìm Tập hợp điểm M ( quỹ tích M) trong mặt phẳng thoả mãn hệ thức
|MA+MB|=|MA-MB|
Cảm ơn đã giải giúp em ạ
Cho ΔABC P là hình truung điểmAB, điểm M thỏa vecto MB= 3 vecto MC
N thỏa vecto NA+ vecto NC= 0
a) Tính vecto MP, NP theo veto AB,AC
b) CMR M,N,P thang hang