Cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,CD,AD,BC. Chứng minh:
a) vectơ MP = vectơ QN
b) vectơ MQ = vectơ PN
1) Cho tam giác ABC.Gọi M,N,P lần lượt là trung điểm của BC,CA,AB.Dựng \(\vec{MK} =\vec{CB}\) và \(\vec{KL} = \vec{BN}\)
a) Chứng minh rằng \(\vec{KP} = \vec{PN}\)
b) Tứ giác AKBN là hình gì ? Vì sao ?
c) Chứng minh rằng \(\vec{AL} = \vec{0}\)
Cho tam giác ABCD và lấy điểm M nằm trong tam giác .Gọi A',B',C' là TĐ của BC,CA,AB và N,P,Q là các điểm đối xứng với M qua A',B',C'.C/m
a) vecto AQ=vecto CN và vecto AM=vecto PC
b) AN,BP,CQ đồng quy
khái niệm
cho 2 vector a và b từ một điểm O bất kì vẽ vecto OA = a , từ điểm A vẽ vector AB = b , khi đó OB được gọi là tổng của vecto a và b ( OB = a + b)
giải bài tập sau theo khái niệm trên
cho tam giác ABC là tam giác đều, cạnh có độ dài = a trọng tâm g vẽ và tính độ dài
AB + BC / AB + AC / AI + BC / BA + CI / AB + CB /
mọi người có thể giải dùm mình bài này với giải thích được tí ko ạ, mình chỉ con mình học ạ
Cho tg ABCD có M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA, CM. CM:
a) \(\overrightarrow{NP}=\overrightarrow{MQ}\)
b) \(\overrightarrow{PQ}=\overrightarrow{MN}\)
Cho tam giác ABC có D,E,F lần lượt là trung điểm của BC, CA, AB. Chứng minh vectơ EF = vectơ CD theo 2 cách.
Cho tam giác ABC . DỰng điểm B' sao cho \(\overrightarrow{AB'}=\overrightarrow{BC}\) và dựng điểm A' sao cho \(\overrightarrow{CA'}=\overrightarrow{AB}\) . tiếp tục dựng thêm điểm C' sao cho \(\overrightarrow{BC'}=\overrightarrow{CA}\).
a, Chứng minh \(\overrightarrow{AB'}\) là vecto đối của \(\overrightarrow{AC'}\) và A là trung điểm của đoạn thẳng B'C'
b. chứng minh AA',BB',CC' cắt nhau tại 1 điểm
Cho hình bình hành ABCD có: M, N lần lượt là trung điểm của BC và AD, I là giao điểm của AM và BN, K là giao điểm của CN và DM. CM:
a) \(\overrightarrow{AM}=\overrightarrow{NC}\)
b) \(\overrightarrow{DK}=\overrightarrow{NI}\)
Cho hình bình hành ABCD, tâm O.Gọi M là trung điểm của cạnh BC,AM cắt BD tại H.
a) Tính vec tơ tổng \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}\)
b)Gọi K là điểm đối xứng của H qua O.Chứng minh \(\overrightarrow{BH}=\overrightarrow{HK}=\overrightarrow{KD}\).Tìm quan hệ điểm K đối với tam giác ACD.