cho hình vuông ABCD tâm O.Trong các vec tơ có điểm đầu điểm cuối là hai trong các điểm A,B,C,D,O.
a.Hãy tìm các vec tơ bằng với vec tơ \(\overrightarrow{AB},\overrightarrow{OC}.\)
Cho lúc giác đều ABCDEF.Hãy vẽ vec tơ bằng vec tơ \(\overrightarrow{AB}\) thỏa mãn:
a)Có điểm đầu là B,F,C. b)Có điểm cuối là F,D,C.
Cho tam giác ABC
a. chứng minh G là trọng tâm tam giác khi vecto GA+ vec to GB + vesto GC= vecto 0
b, với 1 điểm M bất kì ta có vecto MA+ vecto MB+ vecto MC=3 vecto MG
Cho hình bình hành ABCD, tâm O.Gọi M là trung điểm của cạnh BC,AM cắt BD tại H.
a) Tính vec tơ tổng \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}\)
b)Gọi K là điểm đối xứng của H qua O.Chứng minh \(\overrightarrow{BH}=\overrightarrow{HK}=\overrightarrow{KD}\).Tìm quan hệ điểm K đối với tam giác ACD.
Cho tam giác ABC vuông tại A, biết AC=a và góc B= 60 độ.Tính độ dài các vec tơ :
a)\(\overrightarrow{AB}+\overrightarrow{AC}\) b)\(\overrightarrow{AB}-\overrightarrow{AC}\) c)\(\overrightarrow{AB}+\overrightarrow{BC}\) d)\(\overrightarrow{AB}-\overrightarrow{BC}\)
Cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,CD,AD,BC. Chứng minh:
a) vectơ MP = vectơ QN
b) vectơ MQ = vectơ PN
Cho tam giác ABC có D,E,F lần lượt là trung điểm của BC, CA, AB. Chứng minh vectơ EF = vectơ CD theo 2 cách.
cho tam giác ABC đều có cạnh 3a. Lấy các điểm M,N lần lượt trên cạnh BC,CA sao cho BM=a, CN=2a.Gọi P là điểm trên cạnh AB sao cho AM vuông gó với PN . Tính độ dài PN theo a
Cho tam giác ABC . DỰng điểm B' sao cho \(\overrightarrow{AB'}=\overrightarrow{BC}\) và dựng điểm A' sao cho \(\overrightarrow{CA'}=\overrightarrow{AB}\) . tiếp tục dựng thêm điểm C' sao cho \(\overrightarrow{BC'}=\overrightarrow{CA}\).
a, Chứng minh \(\overrightarrow{AB'}\) là vecto đối của \(\overrightarrow{AC'}\) và A là trung điểm của đoạn thẳng B'C'
b. chứng minh AA',BB',CC' cắt nhau tại 1 điểm