b) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_1\cdot x_2=m^2\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2-5x_1x_2=13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=13\)
\(\Leftrightarrow\left(-2m-2\right)^2-7\cdot m^2-13=0\)
\(\Leftrightarrow4m^2+8m+4-7m^2-13=0\)
\(\Leftrightarrow-3m^2+8m-9=0\)(1)
\(\text{Δ}=8^2-4\cdot\left(-3\right)\cdot\left(-9\right)=64-108=-44< 0\)
Vì Δ<0 nên phương trình (1) vô nghiệm
Vậy: Không có giá trị nào của m để phương trình có hai nghiệm x1,x2 thỏa mãn \(x_1^2+x_2^2-5x_1x_2=13\)
a) Để phương trình có nghiệm thì Δ\(\ge\)0
\(\Leftrightarrow\left(2m+2\right)^2-4\cdot1\cdot m^2\ge0\)
\(\Leftrightarrow4m^2+8m+4-4m^2\ge0\)
\(\Leftrightarrow8m\ge-4\)
hay \(m\ge-\dfrac{1}{2}\)