a, Thay m = -2 ta được :
x^2 + 6x + 3 = 0
\(\Leftrightarrow x=-3+\sqrt{6};x=-3-\sqrt{6}\)
b, Để pt có 2 nghiệm
\(\Delta'=\left(m-1\right)^2-\left(-m+1\right)=m^2-2m+1+m-1=m^2-m\)> 0
Theo Viet : \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m+1\end{matrix}\right.\)
Ta có : \(\left(x_1+x_2\right)^2+5x_1x_2=9\)
\(\Leftrightarrow4\left(m-1\right)^2+5\left(-m+1\right)=9\)
\(\Leftrightarrow4m^2-8m+4-5m+5=9\Leftrightarrow4m^2-13m=0\)
\(\Leftrightarrow m\left(4m-13\right)=0\Leftrightarrow m=0\left(ktm\right);m=\dfrac{13}{4}\)(tm)
a, Thay m=-2 vào pt ta có:
\(x^2-2\left(m-1\right)x-m+1=0\\ \Leftrightarrow x^2-2\left(-2-1\right)x-\left(-2\right)+1=0\\ \Leftrightarrow x^2+6x+3=0\\ \Leftrightarrow\left(x^2+6x+9\right)-6=0\\ \Leftrightarrow\left(x+3\right)^2-\sqrt{6^2}=0\\ \Leftrightarrow\left(x+3-\sqrt{6}\right)\left(x+3+\sqrt{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{6}\\x=-3-\sqrt{6}\end{matrix}\right.\)
\(b,\Delta'=\left[-\left(m-1\right)\right]^2-\left(-m+1\right)\\ =m^2-2m+1+m-1\\ =m^2-m\)
Để pt có 2 nghiệm thì \(\) \(\Delta'\ge0\Leftrightarrow m^2-m\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m+1\end{matrix}\right.\)
\(x_1^2+x_2^2+7x_1x_2=9\\ \Leftrightarrow\left(x_1+x_2\right)^2+5x_1x_2=9\\ \Leftrightarrow\left(2m-2\right)^2+5\left(-m+1\right)=9\\ \Leftrightarrow4m^2-8m+4-5m+5-9=0\\ \Leftrightarrow4m^2-13m=0\\ \Leftrightarrow m\left(4m-13\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=\dfrac{13}{4}\left(tm\right)\end{matrix}\right.\)