\(\text{Δ}=\left(-2m\right)^2-4\left(m^2-1\right)=4m^2-4m^2+1=1>0\)
Vậy: Phương trình luôn có hai nghiệm phân biệt với mọi m
Theo đề, ta có:
\(\left\{{}\begin{matrix}3x_1-x_2=0\\x_1+x_2=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=2m\\x_1+x_2=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{2}m\\x_2=\dfrac{3}{2}m\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=m^2-1\)
\(\Leftrightarrow m^2\cdot\dfrac{3}{4}-m^2=-1\)
\(\Leftrightarrow m^2=4\)
hay \(m\in\left\{2;-2\right\}\)