cho hình chóp S.ABCD, đáy ABCD là hình bình hành, tâm O. Gọi M là trung điểm SD
a) vẽ hình
b) xét vị trí tương đối của OM và (SBD)
c) chứng minh OM ∥ (SBA)
d) chứng minh OM ∥ (SBC)
e) chứng minh SB ∥ (MAC)
f) tìm giao tuyến của (OMA) và (SAB)
cho hình chóp S.ABCD đáy ABCD là hình bình hành, tâm O. Gọi M là trung điểm SC
a) xác định vị trí tương đối của OM và (SAC)
b) Chứng minh OM ll (SAD)
c) Chứng minh SA ll (MBD)
d) tìm giao tuyến (OMD) và (SAD)
cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm SD
a) chứng minh SB // (MAC)
b) tìm giao tuyến của (OMA) và (SAB)
cho hình chóp S.ABCD, đáy ABCD là hình bình hành, tâm O. Gọi M là trung điểm SC
a) vẽ hình
b) xét vị trí tương đối của OM và (SAC)
c) chứng minh OM ∥ (SAD)
d) chứng minh SA ∥ (MBD)
e) tìm giao tuyến của (OMD) và (SAD)
cho hình chóp S.ABCD, đáy ABCD là hình bình hành, tâm O. Gọi M là trung điểm SC
a) vẽ hình
b) xét vị trí tương đối của OM và (SAC)
c) chứng minh OM ∥ (SAD)
d) chứng minh SA ∥ (MBD)
e) tìm giao tuyến của (OMD) và (SAD)
cho hình chóp S.ABCD, đáy ABCD là hình bình hành, tâm O. Gọi M là trung điểm SC
a) vẽ hình
b) xét vị trí tương đối của OM và (SAC)
c) chứng minh OM ∥ (SAD)
d) chứng minh SA ∥ (MBD)
e) tìm giao tuyến của (OMD) và (SAD)
cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm SC
a) chứng minh SB // (MAC)
b) tìm giao tuyến của (OMA) và (SAB)
cho hình chóp S.ABCD đáy ABCD là hình vuông, tâm I. Gọi M là trung điểm SA
a) Chứng minh CD ll (SAB)
b) Chứng minh AD ll (SBC)
c) Chứng minh IM ll (SCD)
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M là trung điểm SB, N là điểm trên cạnh BC sao cho BN=2CN. a/ Chứng minh OM // (SCD) b/ Xác định giao tuyến (SCD) và (AMN).