cho hình chóp S.ABCD, đáy ABCD là vuông, tâm I. Gọi M là trung điểm SA
a) vẽ hình
b) chứng minh CD ∥ (SAB)
c) chứng minh AD ∥ (SBC)
d) chứng minh IM ∥ (SCD)
cho hình chóp S.ABCD, đáy ABCD là vuông, tâm I. Gọi M là trung điểm SA
a) vẽ hình
b) chứng minh CD ∥ (SAB)
c) chứng minh AD ∥ (SBC)
d) chứng minh IM ∥ (SCD)
cho hình chóp S.ABCD đáy ABCD là hình bình hành, tâm O. Gọi M là trung điểm SD
a) xác định vị trí tương đối của OM và (SBD)
b) Chứng minh OM ll (SBA)
c) Chứng minh OM ll (SBC)
d) Chứng minh SB ll (MAC)
e) tìm giao tuyến (OMA) và (SAB)
Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn là AD và AD = 2BC. Gọi O là giao điểm của AC và BD, G là trọng tâm của tam giác SCD.
a) Chứng minh rằng OG // (SBC)
b) Cho M là trung điểm của SD. Chứng minh rằng CM // (SAB).
c) Giả sử điểm I nằm trong đoạn SC sao cho SC = 3SI/2. Chứng minh rằng SA // (BID).
cho hình chóp S.ABCD đáy ABCD là hình bình hành, tâm O. Gọi M là trung điểm SC
a) xác định vị trí tương đối của OM và (SAC)
b) Chứng minh OM ll (SAD)
c) Chứng minh SA ll (MBD)
d) tìm giao tuyến (OMD) và (SAD)
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi G là trọng tâm của tam giác SAB và I là trung điểm của AB. Lấy điểm M trong đoạn AD sao cho AD = 3AM
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC).
b) Đường thẳng qua M song song với AB cắt CI tại N. Chứng minh rằng NG // (SCD).
c) Chứng minh rằng MG // (SCD).
cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, tâm O. Gọi H là trung điểm SC
a) vẽ hình
b) chứng minh BC ∥ (SAD)
c) chứng minh AB ∥ (SCD)
d) chứng minh OH ∥ (SAB)
cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, tâm O. Gọi H là trung điểm SC
a) vẽ hình
b) chứng minh BC ∥ (SAD)
c) chứng minh AB ∥ (SCD)
d) chứng minh OH ∥ (SAB)
Cho hình chóp S.ABCD có đáy hình vuông SC⊥ (ABCD). Gọi I, J lần lượt là hình chiếu vuông góc của C lên SB, SD
a/ Chứng minh AB⊥(SBC)
b/ Chứng minh AD⊥(SCD)
c/ Chứng minh SA⊥CI
d/ Chứng minh (SAC)⊥(CIJ)