\(f\left(x\right)=\dfrac{2x+m}{x+1}\)
\(f'\left(x\right)=\dfrac{2\left(x+1\right)-2x-m}{\left(x+1\right)^2}=\dfrac{2-m}{\left(x+1\right)^2}\)
Xét \(m< 2\Rightarrow f'\left(x\right)>0\forall x\in\left[0,2\right]\)
bbt:
\(\Rightarrow f\left(x\right)_{min\left[0,2\right]}+f\left(x\right)_{max\left[0,2\right]}=f\left(0\right)+f\left(2\right)=m+\dfrac{m+4}{3}=8\Rightarrow m=5\) (thỏa)
Xét \(m>2\Rightarrow f'\left(x\right)< 0\forall x\in\left[0,2\right]\)
bbt:
\(\Rightarrow f\left(x\right)_{min\left[0,2\right]}+f\left(x\right)_{max\left[0,2\right]}=f\left(0\right)+f\left(2\right)=m+\dfrac{m+4}{3}=8\Rightarrow m=5\) (loại)
Vậy chỉ có giá trị \(m=5\) thỏa đề