\(f'\left(x\right)=0\) có 2 nghiệm bội lẻ nên hàm có 2 cực trị
\(f'\left(x\right)=0\) có 2 nghiệm bội lẻ nên hàm có 2 cực trị
Cho f(x) là hàm số bậc 4 thỏa mãn \(f\left(0\right)=\dfrac{-1}{\ln2}\). Hàm số \(f'\left(x\right)\) có bảng biến thiên như sau:
Hàm số \(g\left(x\right)=\left|f\left(-x^2\right)-x^2+\dfrac{2^{x^2}}{\ln2}\right|\) có bao nhiêu điểm cực trị?
A. 3
B.2
C.4
D.5
Cho hàm số \(y=f\left(x\right)\) là hàm số bậc bốn thỏa mãn \(f\left(0\right)=0\) .Hàm số \(y=f'\left(x\right)\) có bảng biến thiên như sau:
Hàm số \(g\left(x\right)=\left|f\left(x^2\right)-x^2\right|\) có bao nhiêu điểm cực trị?
A.1
B.3
C.5
D.7
Câu 48: Cho hàm số y=f(x) có đạo hàm liên tục trên R và \(f'\left(x\right)=x\left(2x-1\right)\left(x^2+3\right)+2\). Hàm số \(y=f\left(3-x\right)+2x+2023\) đồng biến trên khoảng nào trong các khoảng sau?
A: \(\left(-\infty;3\right)\)
B: (3;5)
C: (2;5/2)
D: (5/2;3)
Câu 50: Cho hàm số y=f(x) có đạo hàm \(f'\left(x\right)=\left(x-1\right)^2\cdot\left(x^2-2x\right)\) với \(\forall x\in R\). Có bao nhiêu giá trị nguyên dương của tham số m để hàm số \(f\left(x^2-8x+m\right)\) có 5 điểm cực trị?
Cho hàm số \(y=f\left(x\right)\)không âm có đạo hàm trên \(\left[0;\frac{\pi}{4}\right]\)thỏa mãn \(f\left(x\right)=\frac{f'\left(x\right)}{cosx}\).Biết \(f\left(0\right)=1\).giá trị của \(f\left(\frac{\pi}{4}\right)?\)(Đáp án:\(e^{\frac{\sqrt{2}}{2}}\))
Cho \(F\left(x\right)\) là nguyên hàm của hàm số \(f\left(x\right)=xln\left(x+1\right)\)biết \(F\left(1\right)=0\)khi đó giá trị của \(F\left(0\right)\)bằng?
Cho hàm số f(x) có đạo hàm liên tục trên R. Biết f(3) = 1 và \(\int\limits^1_0xf\left(3x\right)dx=1\) , khi đó \(\int_0^3x^2f'\left(x\right)dx\)
Đề bài: Cho hàm số y = f(x) = \(\dfrac{2x+m}{x-1}\). Tính tổng các giá trị của tham số m để \(\overset{maxf\left(x\right)}{\left[2,3\right]}-\overset{minf\left(x\right)}{\left[2,3\right]}=2\)
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Cho hàm số f(x) liên tục trên \(ℝ\backslash\left\{0;-1\right\}\)thỏa mãn \(x\left(x+1\right)\cdot f'\left(x\right)+f\left(x\right)=x^2+x\) với mọi \(x\inℝ\backslash\left\{0;-1\right\}\)và \(f\left(1\right)=-2ln2\).Biết \(f\left(2\right)=a+bln3\)với \(a,b\inℚ\).Tính \(P=a^2+b^2\)