Đường tròn tâm \(I\left(cosa;sina\right)\)
\(\Rightarrow\) Bán kính \(R=\sqrt{cos^2a+sin^2a-\left(-8\right)}=\sqrt{9}=3\)
Đường tròn tâm \(I\left(cosa;sina\right)\)
\(\Rightarrow\) Bán kính \(R=\sqrt{cos^2a+sin^2a-\left(-8\right)}=\sqrt{9}=3\)
Bài 1: Cho đường thẳng d : (1 - m2)x + 2my + m2 - 4m + 1 = 0. Viết phương trình đường tròn (C) luôn tiếp xúc với d với mọi m.
Bài 2: Cho (Cα) : (x2 + y2)sin α = 2( x cos α + y sin α - cos α) (α ≠ k π)
a, CMR: (Cα) luôn là một đường tròn. Định tâm và bán kính của (Cα).
b, CMR: (Cα) có một tiếp tuyến cố định mà ta sẽ xác định phương trình.
Bài 3: Biện luận tùy theo m sự tương giao của đường thẳng (△) và đường tròn (C).
a, (C): x2 + y2 + 2x - 4y + 4 = 0 và (△): mx - y + 2 = 0.
b, (C): x2 + y2 - 4x + 6y + 3 = 0 và (△): 3x - y + m = 0.
Bài 4: Cho đường tròn (C): x2 + y2 - 2x - 4y - 4 = 0 và (C'): x2 + y2 + 6x - 2y + 1 = 0.
a, Chứng minh (C) và (C') cắt nhau tại hai điểm A, B.
b, Cho điểm M(4;1). Chứng minh qua M có hai tiếp tuyến đến (C). Gọi E, F là hai tiếp điểm của hai tiếp tuyến trên với (C). Hãy lập phương trình đường tròn (C) ngoại tiếp với △ MEF.
a) Một đường tròn tâm I(3;-2) tiếp xúc với d: x-5y+1=0. Hỏi bán kính đường tròn bằng bao nhiêu
b) Trong mp Oxy, khoảng cách từ điểm M(0;4) đến đường thẳng \(\Delta:x\cos\alpha+y\sin\alpha+4\left(2-\sin\alpha\right)=0\) bằng
Cho (C\(\alpha\)) : x2+y2-2(sin\(\alpha\))+2(cos\(\alpha\)-2)-3=0, a là tham số
1, Chứng minh rằng (C\(\alpha\)) là phương trình đường tròn với mọi \(\alpha\)
2, Tìm quý tích tâm I
1.Đg tròn (C) có tâm I € đg thẳng d : x +5y -12=0 và tiếp xúc với 2 trục toạ độ có pt là?
2. Trong mặt phẳng Oxy cho 2 đg thẳng
x +3y +8=9 (d)
3x -4y +10=0 (d')
Và điểm A(-2;1). Viết pt đg tròn có tâm thuộc đg thẳng d , đi qua điểm A và tiếp xúc với d'
Cho đg tròn (C) : x^2 + y^2 -2x +6y +6=0 và đg thẳng d : 4x -3y +5=0. Viết pt đg thẳng d' song song với d và chắn trên (C) một dây cũng có độ dài bằng 2√3
Cho đg tròn (C): \(x^2+y^2-4x-y-83=0\) và đg th d: \(x+2y+20=0\). Viết pt đg thg △ song song với d và cắt (C) tạo thành một dây cung có độ dài lớn nhất
Cho (C): \(x^2+y^2-6x+4y-12=0\)
a) Tìm pt đg thg song song d: 3x-4y-2=0 cắt (C) tại 2 điểm A, B mà AB=8
b) Tìm m để Δ: 3x+4y+m=0 là tiếp tuyến của (C)
c) Tìm gđ của (C) và đg thg Δ': \(\left\{{}\begin{matrix}x=3+2t\\y=-2-t\end{matrix}\right.\)
Cho đg tròn (C): \(x^2+y^2+2x-4y-3=0\) và đg thg d: x-y+1=0
a) Chung minh mọi đường thẳng qua d đi qua điểm A(-3;2) luôn cắt (C) tại 2 điểm phân biệt
b) viết Pt tiep tuyến của đg tròn đã cho tại điểm là giao điểm của (C) với tia Ox
c) C/m đg thẳng d cắt đg tròn tại 2 điểm phân biệt A, B. Tính diện tích tam giác AIB
viết pt đường tròn c qua m(-2 1) và các giao điểm của đường thẳng 2x+y-9=0 với đg tròn x^2 +y^2-6x-6y=0