\(sin^2a+cos^2a=1\Rightarrow sina=\sqrt{1-cos^2a}=\frac{2\sqrt{6}}{5}\)
\(cota=\frac{cosa}{sina}=-\frac{\sqrt{6}}{12}\)
\(sin^2a+cos^2a=1\Rightarrow sina=\sqrt{1-cos^2a}=\frac{2\sqrt{6}}{5}\)
\(cota=\frac{cosa}{sina}=-\frac{\sqrt{6}}{12}\)
Chứng minh:
\(a,\frac{cosa}{1+sina}+tana=\frac{1}{cosa}\)
\(b,\frac{1+2sina.cosa}{sin^2a-cos^2a}=\frac{tana+1}{tana-1}\)
c,\(sin^6a+cos^6a=1-3sin^2a.cos^2a\)
d,\(sin^2a-tan^2a=tan^6a\left(cos^2a-cot^2a\right)\)
e.\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a+cot^3a\)
chứng minh biểu thức không phụ thuộc vào x
\(A=2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)\)
\(B=sin^6x+cos^6x-2sin^4x-cos^4x+sin^2x\)
\(C=\left(sin^4x+cos^4x-1\right)\left(tan^2x+cot^2x+2\right)\)
\(D=\frac{1}{cos^6x}-tan^6x-\frac{tan^2x}{cos^2x}\)
Cho 0<a< 90độ và cos a = \(\frac{1}{\sqrt{3}}\). Tính sin a, cot a, tan a,
Ví dụ 3: Chứng minh rằng biểu thức sau độc lập với x,y: A= \(\frac{\cos^2x-\sin^2y}{sin^2x\cdot sin^2y}-cot^2x\cdot cot^2y\)
Chứng minh rằng
\(\dfrac{sin}{1+cos} + cot = \dfrac{1}{sin} \)
chứng minh các biểu thức sau không phụ thuộc vào α
A=\(\dfrac{\sin^4\alpha+\cos^4\alpha-1}{\sin^6\alpha+\cos^6\alpha+3\cos^4\alpha-1}\)
B=\(\cot^230\left(\sin^8\alpha-\cos^8\alpha\right)+4\cos60\left(\cos^6\alpha-\sin^6\alpha\right)-\sin^6\left(90-\alpha\right)\left(\tan^2-1\right)^3\)
Rút gọn các biểu thức sau:
A= \(\dfrac{cos^2\alpha-sin^2\alpha}{cot^2\alpha-tan^2\alpha}-cos^2\alpha\)
B= \(\sqrt{sin^4\alpha+6cos^2\alpha+3cos^4\alpha}+\sqrt{cos^4\alpha+6sin^2\alpha+3sin^4\alpha}\)
Chứng minh các đẳng thức sau :
a) (sin x + cos x)2 = 1 + 2sin x.cos x
b) sin4 x + cos4 x = 1 - 2sin2 x.cos2 x
c) tan2 x - sin2 x = tan2 x.sin2 x
d) sin6 x + cos6 x = 1 - 3sin2 x.cos2 x
e) sin x.cos x (1 + tan x)(1 + cot x) = 1 + 2sin x .cos x
cho \(cosx=-\frac{3}{5}\).Tính sin,tan,cot
rút gọn biểu thức lượng giác
\(\frac{\sin x+\cos x-1}{\sin x-\cos x+1}=\frac{\cos x}{1+\sin x}\)