\(B=\dfrac{x+3+2\left(\sqrt{x}-3\right)+\sqrt{x}+3}{x-9}\)
\(=\dfrac{x+\sqrt{x}+6+2\sqrt{x}-6}{x-9}=\dfrac{x+3\sqrt{x}}{x-9}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
\(B=\dfrac{x+3}{x-9}+\dfrac{2}{3+\sqrt{x}}-\dfrac{1}{3-\sqrt{x}}\\ B=\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\\ B=\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ B=\dfrac{x+3+2\sqrt{x}-6+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ B=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ B=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}\left(\text{đ}pcm\right)\)