a: ĐKXĐ: x+4>=0
=>x>=-4
\(A=\dfrac{1}{5}\sqrt{25x+100}-\sqrt{x+4}+\sqrt{9x+36}\)
\(=\dfrac{1}{5}\cdot5\sqrt{x+4}-\sqrt{x+4}+3\sqrt{x+4}\)
\(=\sqrt{x+4}+2\sqrt{x+4}=3\sqrt{x+4}\)
b: A=9
=>\(3\sqrt{x+4}=9\)
=>\(\sqrt{x+4}=3\)
=>x+4=9
=>x=5(nhận)
a) Để A xác định thì: \(\left\{{}\begin{matrix}25x+100\ge0\\x+4\ge0\\9x+36\ge0\end{matrix}\right.\Rightarrow x\ge-4\)
Khi đó: \(A=\dfrac{1}{5}\sqrt{25x+100}-\sqrt{x+4}+\sqrt{9x+36}\)
\(=\dfrac{1}{5}\sqrt{5^2\cdot\left(x+4\right)}-\sqrt{x+4}+\sqrt{3^2\cdot\left(x+4\right)}\)
\(=\sqrt{x+4}-\sqrt{x+4}+3\sqrt{x+4}\)
\(=3\sqrt{x+4}\)
b) Để \(A=9\) thì \(3\sqrt{x+4}=9\)
\(\Leftrightarrow\sqrt{x+4}=3\)
\(\Leftrightarrow x+4=9\)
\(\Leftrightarrow x=5\left(tmdk\right)\)
$\text{#}Toru$