Cho hình bình hành ABCD. Gọi M,N,K là các điểm định bởi:
vecto AM = 2 vecto AB, vecto AN = 1/3 vecto AD, vecto AK = 2/7 vecto AC. Chứng minh 3 điểm M,K,N thẳng hàng
Cho ∆ABC có trọng tâm G, điểm I thỏa vecto IA = 2 vecto IB
Chứng minh vecto IG = -5/3 vecto AB + 1/3 vecto AC
Cho tứ giác ABCD, trên cạnh AB,CD lấy lần lượt các điểm M,N sao cho 3 vecto AM=2 vecto AB và 3 vecto DN =2 vecto DC. Tính vecto MN theo hai vecto AD, BC
Cho hình bình hành ABCD. Lấy điểm M trên AB sao cho vecto AB = 3 vecto AM, gọi N là trung điểm DC. Hãy phân tích vecto MN theo 2 vecto AB , AC . Mong ai giải giúp em bài này với ạ :(
cho tam giác ABC có I là trung điểm của BC và G là trọng tâm . Gọi D và E là hai điểm xác định bởi vecto AD=2 vecto AB và vecto AE = 2/5 vecto AC . Hãy phân tích các vecto DE , DG theo hai vecto AB , AC . Chứng minh ba điểm D,G,E, thẳng hàng
Cho tam giác ABC và điểm I thỏa mãn vecto IA=-2 vecto IB. Biểu diễn vecto IC theo các vecto AB, vecto AC
cho tam giác ABC .Trên các đường thẳng BC,AC,AB lần lượt lấy các điểm M,N,P sao cho vecto MB=3 vecto MC ,NA= 3vecto CN , vecto PA+vecto PB = vecto 0
a. tính vecto PM,vecto PN theo vecto AB , vecto AC
b. CM :M,N,P thẳng hàng
CẢM ƠN MỌI NGƯỜI
Cho tam giác ABC. Điểm P là điểm thoả mãn : vecto PA=2AB . Điểm M thoả mãn vecto AM=-3AC. Và điểm N thoả mãn vécto PN=-4AB+6AC.
a) Phân tích vecto PM theo 2 vecto AB và AC
b)Chứng minh 3 điểm P,M,N thẳng hàng
Bài 1:
a,Cho vecto u=(4;3). Tìm vecto v, biết vecto v cùng phương và giá trị tuyệt đối vecto v =15
b,Cho vecto a=(2k+10 ; 5k+16)
vecto b=(-8; -16). Tìm số k để 2 vecto: vecto a và vecto b cùng phương
c,Cho 3 vecto: vecto a(3;1)
vecto b(-2;5)
vecto c(0;17)
*Hãy biểu diễn vecto c theo 2 vecto a và vecto b
*Cho vecto u=2m.vecto a + (1-m). vecto b . Hãy tìm số m để giá trị vecto u =9
Bài 2: Trong mặt phẳng tọa độ (O; vecto i; vecto j) cho A(1;-2); B(0;4); C(3;2). Hãy tìm tọa độ của
a,Điểm M, biết: vecto CM= 2.vecto AB-3.vecto AC
b,Điểm N, biết: vecto AN+ 2.vecto BN- 4 vecto CN= vecto 0
c,Tìm tọa độ điểm E là điểm đối xứng với điểm A qua điểm B