Lời giải:
Gọi $I$ là trung điểm của $AB$ thì \(\overrightarrow{IA}; \overrightarrow{IB}\) là hai vector đối nhau.
Ta có:
\(\overrightarrow{MA}.\overrightarrow{MB}=-16\)
\(\Leftrightarrow (\overrightarrow{MI}+\overrightarrow{IA})(\overrightarrow{MI}+\overrightarrow{IB})=-16\)
\(\Leftrightarrow MI^2+\overrightarrow{MI}(\overrightarrow{IA}+\overrightarrow{IB})+\overrightarrow{IA}.\overrightarrow{IB}=16\)
\(\Leftrightarrow MI^2+\overrightarrow{IA}(-\overrightarrow{IA})=-16\)
\(\Leftrightarrow MI^2-IA^2=-16\)
\(\Leftrightarrow MI^2=-16+IA^2=-16+(\frac{AB}{2})^2=-16+4^2=0\)
Do đó \(M\equiv I\) hay $M$ là trung điểm của $AB$. Tập hợp điểm $M$ là \(\left\{I\right\}\)